您好,欢迎访问

商机详情 -

智慧交通时间同步系统及装置同步时钟自主研发

来源: 发布时间:2023年11月06日

近日,宽域卫星宽域时钟同步装置ATS3900成功通过,国家电网第三批自主可控自动化系统及设备检测,获得了检测合格产品认证。宽域自主可控ATS3900系列时钟:TTL电平:以2.4V~5V为电平,以小于0.4V为低电平,用于输出1PPS、IRIG-B码等;RS232:以-5V~-15V为逻辑正“1”,以+5V~+15V为逻辑负“0”,用于输出串口报文等;RS422/485:差分接口,两线之间的电压差2V~6V为电平,逻辑正“1”;两线之间的电压差-2V~-6V;为低电平,逻辑负“0”,用于输出1PPS、IRIG-B码、串口报文;光纤(ST、SC):亮对应电平,灭对应低电平,用于输出1PPS、IRIG-B码、串口报文;静态空接点宽域ATS3500 支持 PTP、NTP/SNTP、IRIG-B码、串口、脉冲、DCF77等信号。智慧交通时间同步系统及装置同步时钟自主研发

智慧交通时间同步系统及装置同步时钟自主研发,同步时钟

宽域网络时间同步,特指在计算机网络内的服务器与客户端之间利用网络报文交换实现的时间同步。鉴于计算机网络传输路径的不确定性和中间路由交换设备转发报文时间的不确定性,通过单播或多播实现的单向网络授时是不可靠的。因此,前辈们发明的网络时间同步技术NTP/PTP等,基本原理都是通过对网络报文打时间戳(标记),往返交换报文计算传输时延和同步误差。频率同步指的是主从时钟的频率误差保持在一定范围内,频率同步有2种类型。智慧交通时间同步系统及装置同步时钟自主研发宽域CDKY-2000S,可广泛应用于各种工业控制系统和工业设备。

智慧交通时间同步系统及装置同步时钟自主研发,同步时钟

矿用分布式采集系统的宽域时钟同步是其正常运行的关键,实现统一的时间基准是后续数据处理的前提。目前,常用的宽域时钟同步技术有北斗、GPS、NTP(NetworkTimeProtocol,网络时间协议)、IEEE1588V2、本地后备时钟和同步线等,见下表。然而,单一的宽域时钟同步技术由于其精度及应用局限性,无法满足矿用分布式采集系统精度、可靠性的宽域时钟同步性能要求。矿用分布式采集系统宽域时钟同步方案原理如下图所示。北斗授时服务器接收北斗系统提供的纳秒级精度的时钟,并作为主时钟通过井下环网为所有采集节点授时;各采集节点软件实现IEEE1588V2协议,接收主时钟的授时进而调整本地的64位时间戳寄存器;本地后备时钟为各采集节点提供秒级精度的时间戳初值,便于各采集节点以短时间实现与北斗授时服务器的同步。

宽域卫星同步时钟为了得到精密的GPS时间,使它的准确度达到<100ns(相对于UTC(USNO/MC)):◆每个GPS卫星上都装有铯子钟作星载钟;◆GPS全部卫星与地面测控站构成一个闭环的自动修正系统;◆采用UTC(USNO/MC)为参考基准。GPS定位、定时和校频的原理。锁相环技术是一种使得输出信号在频率和相位上与输入信号同步的电路技术,利用锁相环技术进入锁定状态或者同步状态后,系统的振荡器输出信号与输入信号之间的相差为零。锁相环技术是时钟同步的技术。模拟锁相环由检相器、环路滤波器和压控振荡器3个部分组成。而数字锁相环中的误差控制信号使用离散的数字信号,而不是模拟电压。智能锁相环路技术,即直接数字频率合成(DDS-DigitalDirectFrequencySynthesis)技术,在单片FPGA中就可以实现。宽域ATS3100通过国网电力科学研究院实验验证中心、国网电力科学研究院实验验证中心检测。

智慧交通时间同步系统及装置同步时钟自主研发,同步时钟

大多数网管型交换机具备的级特性有:QoS是交换机向特定数据帧运用优先级的能力。VLAN允许交换机将设备逻辑分组,且即使所有设备都共用一台物理交换机,也能隔离这些设备组之间的流量。端口镜像允许用交换机的一个端口来监视由交换机的一个或多个端口所发送或接收的流量。这种特性方便对通讯数据进行实时监控,是以太网常用的故障查找方法。IGMPSnooping可自动将组播帧只发给那些请求这些帧的设备,这能防止组播帧发往那些未请求这些帧的设备。SNMP就是简单网管协议,它允许网管应用程序以标准方式和交换机通信,请求状态信息及设置配置等。有些供应商还提供可将SNMP数据转换成系统中所使用的OPC数据的网管程序。环网冗余是网管型宽域工业以太网交换机的常见特性。很多宽域工业交换机厂商都创建了他们自己的环网冗余协议。宽域CDKY-FW3000工控防火墙,支持路由、透明、混合部署模式。智慧交通时间同步系统及装置同步时钟自主研发

宽域ATS1200支持NTP\Onvif、Goose协议时钟监测;支持61850/104规约。智慧交通时间同步系统及装置同步时钟自主研发

该停留时间被累积在校正场中以实现时间同步。例如,由于透明时钟是无状态的,因此它们对环形拓扑网络的重新配置时间没有影响。路径中的每个开关似乎是一条“导线”,它不会扭曲通过它们的数据包的时间计算。这避免了使用多个级联开关时抖动的累积,从而降低了精度。IEEE1588-2008标准支持两种类型的透明时钟,即:端到端(E2E)和对等(P2P)。端到端TCs(End-to-EndTCs) 测量PTP事件消息(带有时间戳的消息)传输网桥所用的时间,并将此信息提供给校正字段中的接收时钟。对等TCs(Peer-to-PeerTCs)使用对等延迟机制,测量共享相同通信技术的两个直接连接端口之间的端口到端口传播延迟时间。对等延迟机制 于端口(主端口或从端口)的状态。它在链路的两个方向上分别运行。智慧交通时间同步系统及装置同步时钟自主研发