您好,欢迎访问

商机详情 -

变电站PCIE板卡同步时钟自主研发

来源: 发布时间:2023年10月20日

NTP也是基于UDP报文传输,端口号为123;NTP的工作模块有四种:服务器/客户端模式(server/Client)、对等体模式(symmetricactive/passive)、广播模式(broadcastserver/Client)、组播模式(multicastserver/client)除对等体外其他的都是有server,client去请求时钟信息,对等体模式是主动体和被动体相互同步时间。在未来的日子里,宽域将一如既往地提升产品的竞争力,通过全新的产品战略整个行业向前发展,再创佳绩。为了减少人力、物力等成本的投入,建设更加智慧高效的生产系统,未来,工业智慧化应用必将越来越多,越来越精细,深度融合5G、大数据、云计算、AI、融合通信等前沿技术应用的同时,信息、技术、设备与生产管理需求也将有机结合为一个整体。由此,存在“牵一发而动全身”的业务瘫痪风险,基础设施更是整个系统的根基所在,除了要从组网构造等技术方面考虑稳定、可靠、安全之外,设备本身更应当符合工业现场的应用要求。宽域KYSOC-5000工控网络安全态势感知系统,长周期异常行为检测。变电站PCIE板卡同步时钟自主研发

变电站PCIE板卡同步时钟自主研发,同步时钟

1.1.2IRIG-BIRIG-B 测距间仪表组时间代码B,是GPS时间同步的行业标准。IRIG-B可应用于变电站,用于电能质量和系统稳定性监测、事件顺序记录和收入计费的准确时间戳(1ms)。IRIG-B时间码只能通过 双绞线或同轴电缆传输,它不是时间同步的低成本解决方案。IRIG-B需要一个外部时间源。时间采样值的准确性取决于时间同步的可用性和质量,可以在微秒范围内(典型值100ps)。1.1.31PPS1PPS 每秒一个脉冲。它是一种高精度的时间脉冲,由精密时钟(如GPS接收器)发出,非常精确地指示一秒钟的开始。1PPS通过单独的线路发送给每个用户,需要大量额外的布线工作。1PPS的时间同步精度可在微秒范围内(典型值1ps)。变电站PCIE板卡同步时钟自主研发宽域关注工业各行业的新技术发展与应用,创立至今,超过20万台/套设备稳定应用于现场。

变电站PCIE板卡同步时钟自主研发,同步时钟

然而,在通过网络时间协议(networktimeprotocol,简称为ntp)进行时钟同步的运维过程中遇到了以下问题:(1)虚拟机时间因自身晶振的频率保持能力不足,容易导致偏差,需要通过网络时间协议ntp不断进行修正,如果向服务端同步过于频繁,则会使服务端承担较大的压力,如果同步频率过低,又会导致虚拟机的时间出现偏差。(2)当服务端承担的压力较大时,可能出现无法响应新的请求的情况,进而可能会导致虚拟机的时间出现偏差。(3)传统的时钟同步装置,通常专注于对客户端的配置,面对大规模的云计算环境缺乏对服务端的管理和运维,运维效率较低。

伴随着广播电视设备的数字化、网络化、信息化和自动化,自动化播出系统在广播电视中的应用越来越,时钟系统已经成为节目制作和播出环节的标配设备。广电设备需要更精度的宽域时间同步,设备间的接口类型也是层出不穷。我们对时钟的认识,也不停留在钟面的视觉误差、时钟对演播室的装饰和点缀等表象层面,而是更关注时钟系统能够提供精确的底层和后台同步,关注时钟系统的稳定可靠性,关注时钟设备人机界面的友好易用、零调整,关注时钟系统能否适应越来越多的接口类型需求的扩展性。这些要求不针对广电运营机构,也对设备研发机构和供货商提出了更要求。宽域CDKY-OSH8000工业主机卫士(主机加固),兼容实体机、虚拟化环境。

变电站PCIE板卡同步时钟自主研发,同步时钟

宽域时钟同步的目的是使DCS系统内部和其它系统之间的时间标记数据一致,实际上并不需要时间一致,只要相对时间就足够了,也不需要与某个地域时间一致。DCS具备使网络中各个节点的宽域时钟同步的功能。在实际应用中,当需要与其它系统宽域时钟同步时,宜由DCS向第三方应用计算机或网络发布宽域时钟同步信号,第三方计算机设备与DCS同步。对于不用时间标记记录数据的第三方设备,不必设置宽域时钟同步。网络中节点数量大于50的网络宜设置宽域时钟同步器,宽域时钟同步器的授时精度不应低于lms,守时精度不应低于2μs/min。宽域CDKY-FID4000工业隔离装置,采用 2+1 系统结构,实现文件的存储和转发。变电站PCIE板卡同步时钟自主研发

宽域CDKY-2000S,分析结果支持上送到态势感知平台。变电站PCIE板卡同步时钟自主研发

该方案能兼容矿用分布式采集系统硬件架构,适用性强;只需要额外部署1台北斗授时服务器作为主时钟,同时采集节点软件移植IEEE1588V2协议,无需其他硬件投入,成本低;北斗授时服务器由于不可控因素失效后,只要井下工业环网与采集节点能够正常运行,IEEE1588V2会按照佳主时钟(BestMasterClock,BMC)算法设置1台优先级的采集节点作为主时钟,其他采集节点作为从时钟依然与主时钟保持宽域时钟同步,鲁棒性强。每隔2s将各采集节点的主从状态、时间偏差等参数通过串口发送至PC,便于后期统计分析。北斗授时服务器与采集节点通过交换机直连(测试方案①)的情况下,1min后宽域时钟同步精度达162ns;北斗授时服务器与采集节点通过三级交换机连接(测试方案②)的情况下,宽域时钟同步精度为565ns;在测试方案②下北斗授时服务器失效时,优先级的采集节点升级为主时钟并为其余采集节点授时,具有较强的可靠性。变电站PCIE板卡同步时钟自主研发