您好,欢迎访问

商机详情 -

高性能光谱共焦使用方法

来源: 发布时间:2023年11月22日

主要对光谱共焦传感器的校准时的误差进行研究。分别利用激光干涉仪与高精度测长机对光谱共焦传感器进行测量,用球面测头保证光谱共焦传感器的光路位于测头中心,以保证光谱共焦传感器的在测量时的安装精度,然后更换平面侧头,对光谱共焦传感器进行校准。用 小二乘法对测量数据进行处理,得到测量数据的非线性误差。结果表明:高精度测长机校准时的非线性误差为0.030%,激光干涉仪校准时的分析线性误差为0.038%。利用 小二乘法进行数据处理及非线性误差的计算,减小校准时产生的同轴度误差及光谱共焦传感器的系统误差,提高对光谱共焦传感器的校准精度。光谱共焦技术具有轴向按层分析功能。高性能光谱共焦使用方法

高性能光谱共焦使用方法,光谱共焦

主要是对光谱共焦传感器的校准后的误差进行分析。各自利用干涉仪与高精密测长机对光谱共焦传感器开展测量,用曲面测针确保光谱共焦传感器的激光光路坐落于测针,以确保光谱共焦传感器在测量时安装精密度,随后拆换平面图歪头,对光谱共焦传感器开展校准。用小二乘法对测量数据进行解决,获得测量数据库的离散系统误差。结果显示:高精密测长机校准后的离散系统误差为 0.030%,激光器于涉仪校准时的分析线形误差为0.038%。利用小二乘法开展数据处理方法及离散系统误差的计算,减少校准时产生的平行度误差及光谱共焦传感器的系统误差,提高对光谱共焦传感器的校准精密度。赣州高性能光谱共焦光谱共焦技术可以对样品的化学成分进行分析。

高性能光谱共焦使用方法,光谱共焦

对光谱共焦位移传感器原理进行理解与分析得出,想得到的理想镜头应该具备以下性能:首先需要其产生较大的轴向色差,通常需要对镜头进行消色差措施,而对于此传感器需要利用其色差进行测量,并且还需将其扩大化,其次产生轴向色差后在轴上的焦点会由于单色光球差的问题导致光谱曲线响应FWHM(Full Width at Half Maximum)变大,影响分辨率,同时为确保单色光在轴上汇聚点单一,需要对其球差进行控制, 为使此位移传感器从原理上保证传感器的线性度,平衡传感器各个聚焦位置的灵敏度,应尽量使焦点位置与波长成线性关系。

在实践中,光谱共焦位移传感器可用于很多方面,如:利用独特的光谱共焦测量原理,凭借一只探头就可以实现对玻璃等透明材料进行精确的单向厚度测量。光谱共焦位移传感器有效监控药剂盘以及铝塑泡罩包装的填充量。可以使传感器完成对被测表面的精确扫描,实现纳米级的分辨率。光谱共焦传感器可以单向对试剂瓶的壁厚进行测量:,而且对瓶壁没有压力。可通过设计转向反射镜实现孔壁的结构检测及凹槽深度的测盘。(创视智能已推出了90°侧向出光版本探头,可以直接进行深孔和凹槽的测量)光谱共焦传感器用于层和玻璃间隙测且,以确定单层玻璃之间的间隙厚度。光谱共焦技术的研究集中在光学系统的设计和优化,以及数据处理和成像算法的研究。

高性能光谱共焦使用方法,光谱共焦

光谱共焦传感器可以提供结合精度和高速的现代技术。这些特性使这些多功能距离和位移传感器非常适合工业 4.0 的高要求。在工业 4.0 的世界中,传感器必须能够进行高速测量并提供高精度结果,以确保可靠的质量保证。光学测量技术是非接触式的,于目标材料分开和表面特性,因此它们对生产和检测过程变得越来越重要。这是“实时”生产过程中的一个主要优势,在这种过程中,触觉测量技术正在发挥其极限,尤其是当目标位于难以接近的区域时。光谱共焦传感器提供突破性的技术、高精度和高速度。此外,共焦色差测量技术允许进行距离测量、透明材料的多层厚度测量、强度评估以及钻孔和凹槽内的测量。测量过程是无磨损的、非接触式的,并且实际上与表面特性无关。由于测量光斑尺寸极小,即使是非常小的物体也能被检测到。因此,共焦色度测量技术适用于在线质量控制。光谱共焦技术可以实现对样品的三维成像和分析。密云区光谱共焦操作方法

光谱共焦技术可以在医学诊断中发挥重要作用。高性能光谱共焦使用方法

采用对比测试方法,首先对基于白光共焦光谱技术的靶丸外表面轮廓测量精度进行了考核,图5(a)是靶丸外表面轮廓的原子力显微镜轮廓仪和白光共焦光谱轮廓仪的测量曲线。为了便于比较,将原子力显微镜轮廓仪的测量数据进行了偏移。从图中可以看出,二者的低阶轮廓整体相似,局部的轮廓信息存在一定的偏差,原因在于二者在靶丸赤道附近的精确测量圆周轮廓结果不一致;此外,白光共焦光谱的信噪比较原子力低,这表明白光共焦光谱适用于靶丸表面低阶的轮廓误差的测量。图5(b)是靶丸外表面轮廓原子力显微镜轮廓仪测量数据和白光共焦光谱轮廓仪测量数据的功率谱曲线,从图中可以看出,在模数低于100的功率谱范围内,两种方法的测量结果一致性较好,当模数大于100时,白光共焦光谱的测量数据大于原子力显微镜的测量数据,这也反应了白光共焦光谱仪在高频段测量数据信噪比相对较差的特点。由于光谱传感器Z向分辨率比原子力低一个量级,同时,受环境振动、光谱仪采样率及样品表面散射光等因素的影响,共焦光谱检测数据高频随机噪声可达100nm左右。高性能光谱共焦使用方法