您好,欢迎访问

商机详情 -

小型膜厚仪

来源: 发布时间:2024年03月07日

本文研究的锗膜厚度约为300nm,导致白光干涉输出的光谱只有一个干涉峰,无法采用常规的基于相邻干涉峰间距解调的方案,如峰峰值法等。为此,研究人员提出了一种基于单峰值波长移动的白光干涉测量方案,并设计制作了膜厚测量系统。经实验证明,峰值波长和温度变化之间存在很好的线性关系。利用该方案,研究人员成功测量了实验用锗膜的厚度为338.8nm,实验误差主要源于温度控制误差和光源波长漂移。该论文通过对纳米级薄膜厚度测量方案的研究,实现了对锗膜和金膜厚度的测量,并主要创新点在于提出了基于白光干涉单峰值波长移动的解调方案,并将其应用于极短光程差的测量。操作需要一定的专业素养和经验,需要进行充分的培训和实践。小型膜厚仪

光学测厚方法集光学、机械、电子、计算机图像处理技术为一体,以其光波长为测量基准,从原理上保证了纳米级的测量精度。同时,光学测厚作为非接触式的测量方法,被广泛应用于精密元件表面形貌及厚度的无损测量。其中,薄膜厚度光学测量方法按光吸收、透反射、偏振和干涉等光学原理可分为椭圆偏振法、分光光度法、干涉法等多种测量方法。不同的测量方法,其适用范围各有侧重,褒贬不一。因此结合多种测量方法的多通道式复合测量法也有研究,如椭圆偏振法和光度法结合的光谱椭偏法,彩色共焦光谱干涉和白光显微干涉的结合法等。原装膜厚仪免费咨询随着技术的进步和应用领域的拓展,白光干涉膜厚仪的性能和功能将不断提升和扩展。

目前,常用的显微干涉方式主要有Mirau和Michelson两种方式。Mirau型显微干涉结构中,物镜和被测样品之间有两块平板,一块涂覆高反射膜的平板作为参考镜,另一块涂覆半透半反射膜的平板作为分光棱镜。由于参考镜位于物镜和被测样品之间,物镜外壳更加紧凑,工作距离相对较短,倍率一般为10-50倍。Mirau显微干涉物镜的参考端使用与测量端相同的显微物镜,因此不存在额外的光程差,因此是常用的显微干涉测量方法之一。Mirau显微干涉结构中,参考镜位于物镜和被测样品之间,且物镜外壳更加紧凑,工作距离相对较短,倍率一般为10-50倍。Mirau显微干涉物镜的参考端使用与测量端相同的显微物镜,因此不存在额外的光程差,同时该结构具有高分辨率和高灵敏度等特点,适用于微小样品的测量。因此,在生物医学、半导体工业等领域得到广泛应用。

由于不同性质和形态的薄膜对测量量程和精度的需求不相同,因此多种测量方法各有优缺点,难以笼统评估。测量特点总结如表1-1所示,针对薄膜厚度不同,适用的测量方法分别为椭圆偏振法、分光光度法、共聚焦法和干涉法。对于小于1μm的薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较为适用;而对于小于200nm的薄膜,椭圆偏振法结果更可靠,因为透过率曲线缺少峰谷值。光学薄膜厚度测量方案目前主要集中于测量透明或半透明薄膜。通过使用不同的解调技术处理白光干涉的图样,可以得到待测薄膜厚度。本章详细研究了白光干涉测量技术的常用解调方案、解调原理及其局限性,并得出了基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,提出了一种基于干涉光谱单峰值波长移动的白光干涉测量解调技术。随着技术的不断进步和应用领域的扩展,白光干涉膜厚仪的性能和功能将得到进一步提高。

针对微米级工业薄膜厚度测量,开发了一种基于宽光谱干涉的反射式法测量方法,并研制了适用于工业应用的小型薄膜厚度测量系统,考虑了成本、稳定性、体积等因素要求。该系统结合了薄膜干涉和光谱共聚焦原理,采用波长分辨下的薄膜反射干涉光谱模型,利用经典模态分解和非均匀傅里叶变换的思想,提出了一种基于相位功率谱分析的膜厚解算算法。该算法能够有效利用全光谱数据准确提取相位变化,抗干扰能力强,能够排除环境噪声等假频干扰。经过对PVC标准厚度片、PCB板芯片膜层及锗基SiO2膜层的测量实验验证,结果表明该测厚系统具有1~75微米厚度的测量量程和微米级的测量不确定度,而且无需对焦,可以在10ms内完成单次测量,满足工业级测量需要的高效便捷的应用要求。该仪器的使用需要一定的专业技能和经验,操作前需要进行充分的培训和实践。薄膜膜厚仪的原理

白光干涉膜厚仪是用于测量薄膜厚度的一种仪器,可用于透明薄膜和平行表面薄膜的测量。小型膜厚仪

常用的白光垂直扫描干涉系统的原理是:入射的白光光束通过半反半透镜进入到显微干涉物镜,被分光镜分成两部分,一部分入射到固定的参考镜,另一部分入射到样品表面,当参考镜表面和样品表面的反射光再次汇聚后,发生干涉,干涉光通过透镜后,利用电荷耦合器(CCD)探测双白光光束的干涉图像。通过Z向精密位移台带动干涉镜头或样品台Z向扫描,获得一系列干涉图像。根据干涉图像序列中对应点的光强随光程差变化曲线,可得该点的Z向相对位移;然后,通过CCD图像中每个像素点光强最大值对应的Z向位置,可测量被测样品表面的三维形貌。该系统具有高分辨率和高灵敏度等特点,广泛应用于微观表面形貌测量和薄膜厚度测量等领域。小型膜厚仪

标签: 光谱共焦