您好,欢迎访问

商机详情 -

原装膜厚仪免费咨询

来源: 发布时间:2023年11月21日

白光光谱法克服了干涉级次的模糊识别问题,具有动态测量范围大,连续测量时波动范围小的特点,但在实际测量中,由于测量误差、仪器误差、拟合误差等因素,干涉级次的测量精度仍其受影响,会出现干扰级次的误判和干扰级次的跳变现象。导致公式计算得到的干扰级次m值与实际谱峰干涉级次m'(整数)之间有误差。为得到准确的干涉级次,本文依据干涉级次的连续特性设计了以下校正流程图,获得了靶丸壳层光学厚度的精确值。导入白光干涉光谱测量曲线。白光干涉膜厚测量技术可以应用于材料科学中的薄膜微结构分析。原装膜厚仪免费咨询

白光扫描干涉法能免除色光相移干涉术测量的局限性。白光扫描干涉法采用白光作为光源,白光作为一种宽光谱的光源,相干长度较短,因此发生干涉的位置只能在很小的空间范围内。而且在白光干涉时,有一个确切的零点位置。测量光和参考光的光程相等时,所有波段的光都会发生相长干涉,这时就能观测到有一个很明亮的零级条纹,同时干涉信号也出现最大值,通过分析这个干涉信号,就能得到表面上对应数据点的相对高度,从而得到被测物体的几何形貌。白光扫描干涉术是通过测量干涉条纹来完成的,而干涉条纹的清晰度直接影响测试精度。因此,为了提高精度,就需要更为复杂的光学系统,这使得条纹的测量变成一项费力又费时的工作。智能膜厚仪供应白光干涉膜厚测量技术可以对不同材料的薄膜进行联合测量和分析。

微纳制造技术的发展推动着检测技术向微纳领域进军,微结构和薄膜结构作为微纳器件中的重要组成部分,在半导体、医学、航天航空、现代制造等领域得到了广泛的应用,由于其微小和精细的特征,传统检测方法不能满足要求。白光干涉法具有非接触、无损伤、高精度等特点,被广泛应用在微纳检测领域,另外光谱测量具有高效率、测量速度快的优点。因此,本文提出了白光干涉光谱测量方法并搭建了测量系统。和传统白光扫描干涉方法相比,其特点是具有较强的环境噪声抵御能力,并且测量速度较快。

论文主要以半导体锗和贵金属金两种材料为对象,研究了白光干涉法、表面等离子体共振法和外差干涉法实现纳米级薄膜厚度准确测量的可行性。由于不同材料薄膜的特性不同,所适用的测量方法也不同。半导体锗膜具有折射率高,在通信波段(1550nm附近)不透明的特点,选择采用白光干涉的测量方法;而厚度更薄的金膜的折射率为复数,且能激发明显的表面等离子体效应,因而可借助基于表面等离子体共振的测量方法;为了进一步改善测量的精度,论文还研究了外差干涉测量法,通过引入高精度的相位解调手段,检测P光与S光之间的相位差提升厚度测量的精度。白光干涉膜厚测量技术可以应用于激光加工中的薄膜吸收率测量。

开展白光干涉理论分析,在此基础详细介绍了白光垂直扫描干涉技术和白光反射光谱技术的基本原理,完成了应用于靶丸壳层折射率和厚度分布测量实验装置的设计及搭建。该实验装置主要由白光反射光谱探测模块、靶丸吸附转位模块、三维运动模块、气浮隔震平台等几部分组成,可实现靶丸的负压吸附、靶丸位置的精密调整以及靶丸360°范围的旋转及特定角度下靶丸壳层白光反射光谱的测量。基于白光垂直扫描干涉和白光反射光谱的基本原理,建立了二者联用的靶丸壳层折射率测量方法,该方法利用白光反射光谱测量靶丸壳层光学厚度,利用白光垂直扫描干涉技术测量光线通过靶丸壳层后的光程增量,二者联立即可求得靶丸折射率和厚度数据。白光干涉膜厚测量技术的应用涵盖了材料科学、光学制造、电子工业等多个领域。智能膜厚仪供应

白光干涉膜厚测量技术可以应用于光学元件制造中的薄膜厚度控制。原装膜厚仪免费咨询

白光干涉时域解调方案需要借助机械扫描部件带动干涉仪的反射镜移动,补偿光程差,实现对信号的解调[44-45]。系统基本结构如图2-1所示。光纤白光干涉仪的两输出臂分别作为参考臂和测量臂,作用是将待测的物理量转换为干涉仪两臂的光程差变化。测量臂因待测物理量而增加了一个未知的光程,参考臂则通过移动反射镜来实现对测量臂引入的光程差的补偿。当干涉仪两臂光程差ΔL=0时,即两干涉光束为等光程的时候,出现干涉极大值,可以观察到中心零级干涉条纹,而这一现象与外界的干扰因素无关,因而可据此得到待测物理量的值。干扰输出信号强度的因素包括:入射光功率、光纤的传输损耗、各端面的反射等。外界环境的扰动会影响输出信号的强度,但是对零级干涉条纹的位置不会产生影响。原装膜厚仪免费咨询

标签: 光谱共焦