研究直流磁控反应溅射ITO膜过程中ITO靶材的毒化现象,用XRD、EPMA、LECO测氧仪等手段对毒化发生的机理进行分析,并对若干诱导因素进行讨论,研究表明ITO靶材毒化是由于In2O3。主相分解为In2O造成的,靶材性能及溅射工艺缺陷都可能诱导毒化发生.ITO薄膜作为一种重要的透明导电氧化物半导体材料,因具有良好的导电性能及光透射率广泛应用于液晶显示、太阳能电池、静电屏蔽、电致发光等技术中,用氧化铟+氧化锡烧结体作为靶材,直流磁控反应溅射法制备ITO薄膜与用铟锡合金靶相比,具有沉积速度快,膜质优良,工艺易控等优点成为目前的主流?但是,此法成膜过程中会经常发生ITO靶材表面黑色化,生成黑色不规则球状节瘤,本文称此现象为靶材毒化,毒化使溅射速率下降,膜质劣化,迫使停机清理靶材表面后才能继续正常溅射,严重影响了镀膜效率。
从整体上看,ITO在光电综合性能上高于AZO靶材,但AZO靶材的优势或将为靶材带来降本空间。青海光伏行业陶瓷靶材
从整体上看,ITO在光电综合性能上高于AZO靶材,但AZO靶材的优势或将为靶材带来降本空间。在相关实验中利用AZO靶材和ITO靶材制备了3组实验薄膜(共6份样品)。实验中主要从光学性能和电学性能上对AZO薄膜和ITO薄膜进行了对比。在特定情况下AZO靶材与ITO靶材电学性能差距缩小。根据比较终实验数据来看,AZO薄膜和ITO薄膜的方块电阻以及电阻率随着薄膜的厚度增加而降低,并且随着薄膜厚度的增加,AZO薄膜与ITO薄膜方块电阻以及电阻率之间的差距逐步缩小。当AZO薄膜厚度为640nm时,方块电阻以及电阻率为32Ω•sq-1和20.48*10-4Ω•cm。AZO薄膜光学性能优于ITO薄膜。ITO薄膜的光学性能随着厚度的增加明显变差,但是对于AZO薄膜,透射率并没有随着厚度的增加而明显下降,在厚度为395nm时,高透射率光谱范围比较宽,可见光区平均透射率比较高,光学总体性能比较好,可充当透射率要求在85%以上的宽光谱透明导电薄膜的光学器件陕西功能性陶瓷靶材生产企业靶材主要用于生成太阳能薄膜电池的背电极,晶体硅太阳能电池较少用到溅射靶材。
薄膜晶体管液晶显示面板(TFT-LCD)是当前的主流平面显示技术。薄膜晶体管阵列的制作原理,是在真空条件下,利用离子束流去轰击固体,使固体表面的原子电离后沉积在玻璃基板上,经过反复多次的“沉积+刻蚀”,一层层(一般为7-12层)地堆积制作出薄膜晶体管阵列。这种被轰击的固体,即用溅射法沉积薄膜的原材料,就被称作溅射靶材。除LCD外,近年来快速发展的OLED面板产业靶材需求增长也十分明显。OLED典型结构是在氧化铟锡(ITO)玻璃上制作一层几十纳米厚的发光材料,ITO透明电极作为器件的阳极,钼或者合金材料作为器件的阴极。平板显示制造中主要使用的靶材为钼铝铜金属靶材和氧化铟锡(ITO)靶材。目前国内单条8.5代线ITO靶材年需求量约40吨,6代线ITO靶材年需求量约20吨。
陶瓷靶材是一种重要的溅射靶材,广泛应用于各个领域的薄膜制备和表面处理。作为一种高纯度、高密度的材料,陶瓷靶材具有许多独特的特点和优势。首先,陶瓷靶材具有优异的化学稳定性和热稳定性,能够在高温和复杂的化学环境下保持稳定的性能。这使得陶瓷靶材在各种薄膜制备过程中能够提供稳定的材料源,确保薄膜的质量和性能。其次,陶瓷靶材具有良好的机械性能和热导性能。这使得陶瓷靶材在溅射过程中能够承受高能量的离子轰击和高温的热冲击,不易发生破裂和变形。同时,陶瓷靶材的高热导性能能够有效地散热,保持靶材表面的稳定温度,提高溅射过程的效率和稳定性。此外,陶瓷靶材具有优异的光学性能和电学性能。不同种类的陶瓷靶材具有不同的光学和电学特性,可以根据具体需求选择合适的靶材。例如,氧化物靶材可以用于制备透明导电膜、光学薄膜和光学器件,而金属靶材可以用于制备导电膜和磁性薄膜。陶瓷靶材具有丰富的种类和规格,能够满足不同行业和应用的需求。无论是光学薄膜、电子器件还是太阳能电池,陶瓷靶材都能提供高质量的材料源,帮助客户实现产品的优化和创新。我们公司致力于提供高质量的陶瓷靶材产品,满足客户的需求,推动行业的发展和进步。目前制备太阳能电池较为常用的溅射靶材包括铝靶、铜靶、钼靶、铬靶以及ITO靶、AZO靶(氧化铝锌)等。
ITO陶瓷靶材在磁控溅射过程中,靶材表面受到Ar轰击和被溅射原子再沉积的多重作用而发生复杂的物理化学变化,ITO靶材表面会产生许多小的结瘤,这个现象被称为ITO靶材的毒化现象。靶材结瘤毒化后.靶材的溅射速率降低,孤光放电频率增加,所制备的薄膜电阻增加,透光率降低且均一性变差,此时必须停止溅射,清理靶材表面或更换靶材,这严重降低溅射镀膜效率。目前对于结瘤形成机理尚未有统一定论,如孔伟华研究了不同密度ITO陶瓷材磁控射后的表面形貌,认为结瘤是In2O3、分解所致,导电导热性能不好的In2O3又成为热量聚集的中心,使结瘤进一步发展;姚吉升等研究了结瘤物相组成及化学组分,认为结瘤是偏离了化学计量的ITO材料在靶材表面再沉积的结果;Nakashima等采用In2O3和SnO2,的混合粉末制备ITO靶材,研究了SnO2,分布状态对靶材表面结瘤形成速率的影响,认为低溅射速率的SnO2,在ITO靶材中的不均匀分布是结瘤的主要原因。尽管结瘤机理尚不明确,但毋庸置疑的是,结瘤的产生严重影响ITO陶瓷靶材的溅射性能,因此,对结瘤的形成机理进行深入研究具有重要意义。薄膜晶体管液晶显示面板(TFT-LCD)是当前的主流平面显示技术。中国台湾镀膜陶瓷靶材咨询报价
陶瓷靶材的制备工艺难点;青海光伏行业陶瓷靶材
平板显示行业主要在显示面板和触控屏面板两个产品生产环节需要使用靶材溅射镀膜,主要用于制作ITO玻璃及触控屏电极,用量比较大的是氧化铟锡(ITO)靶材,其次还有钼、铝、硅等金属靶材。1)平板显示面板的生产工艺中,玻璃基板要经过多次溅射镀膜形成ITO 玻璃,然后再经过镀膜,加工组装用于生产LCD 面板、PDP 面板及OLED 面板等;2)触控屏的生产则还需将ITO 玻璃进行加工处理、经过镀膜形成电极,再与防护屏等部件组装加工而成。采用硅靶材溅镀形成的二氧化硅膜则主要起增加玻璃与ITO 膜的附着力和平整性、表面钝化和保护等作用,MoAlMo(钼铝钼)靶材镀膜后蚀刻主要起金属引线搭桥的作用。此外,为了实现平板显示产品的抗反射、消影等功能,还可以在镀膜环节中增加相应膜层的镀膜。青海光伏行业陶瓷靶材
江苏迪纳科精细材料股份有限公司成立于2011-07-22,是一家专注于溅射靶材,陶瓷靶材,金属靶材,等离子喷涂靶材的****,公司位于南京市江宁区芳园西路10号九龙湖国际企业园创新中心A座8层。公司经常与行业内技术**交流学习,研发出更好的产品给用户使用。公司主要经营溅射靶材,陶瓷靶材,金属靶材,等离子喷涂靶材等产品,我们依托高素质的技术人员和销售队伍,本着诚信经营、理解客户需求为经营原则,公司通过良好的信誉和周到的售前、售后服务,赢得用户的信赖和支持。公司与行业上下游之间建立了长久亲密的合作关系,确保溅射靶材,陶瓷靶材,金属靶材,等离子喷涂靶材在技术上与行业内保持同步。产品质量按照行业标准进行研发生产,绝不因价格而放弃质量和声誉。江苏迪纳科精细材料股份有限公司以诚信为原则,以安全、便利为基础,以优惠价格为溅射靶材,陶瓷靶材,金属靶材,等离子喷涂靶材的客户提供贴心服务,努力赢得客户的认可和支持,欢迎新老客户来我们公司参观。