传输线理论基础与特征阻抗
传输线理论实际是把电磁场转换为电路的分析来简化分析的手段,分布式元件的传输线 电路模型传输线由一段的RLGC元件组成。
为了更简便地分析传输线,引入特征阻抗的概念,由特征阻抗来进行信号传输的分析。 将传输线等效成分段电路模型后,可以用电路的理论来求解。
特征阻抗,或称特性阻抗,是衡量PCB上传输线的重要指标。PCB传输线的特征/ 特性阻抗不是直流电阻,它属于长线传输中的概念。
可以看到特征阻抗是一个在传输线的某个点上的瞬时入射电压与入射电流或者反射电 压与反射电流的比值。和传输阻抗的概念并不一致,传输阻抗是某个端口上总的电压和电流的 比值。只有在整个传输路径上阻抗完全匹配且没有反射存在的情况下,特征阻抗才等于传输阻 抗。 信号完整性测试所需工具说明;江苏PCI-E测试信号完整性分析
振铃通常是由于信号传输路径过长并且阻抗不连续所引起的多次反射造成的,或者是由 于信号之间的干扰(串扰)、信号跳变所引起的电源/地波动(同步开关噪声)造成的。
(4)边沿单调性(Monotonicity)指信号上升或下降沿的回沟。对于边沿判决的时钟信号, 波形边沿在翻转门限电平处的非单调可能造成逻辑判断错误。
边沿单调性通常是由于信号传输路径过长并且阻抗不连续所引起的反射、多负载的反射 或者驱动输出阻抗较大(驱动过小)所导致的接收信号过缓等引起的。 河南机械信号完整性分析信号完整性分析方法信号完整性分析概述。
比如,在现在常见的高速串行传输链路中,几个吉赫兹(GHz)以上的信号在电路板上 的走线传输,由于本质上电路板上传输线的损耗是随着频率的升高而增大的(在后面的传输 线部分及S参数部分都会有介绍),使得高频分量的损耗大于低频分量的损耗,在接收端收 到的各个频率分量不是原来的样子,使得这些频率分量起来的数字时域信号产生畸变。 所以,在高速串行传输中,会釆用一些信号处理的方法来补偿高频分量比低频分量传输时损 耗大的问题。比如去加重(在发送时人为降低低频分量)和预加重(在发送时人为提高高频 分量)。
信号完整性分析三种测试方法
在信号完整性分析中,常用的测试方法包括以下三种:
1.时域测试:时域测试是通过观察信号在时间轴上的波形来分析信号完整性。时域测试可以帮助识别信号的上升时间、下降时间、瞬态响应等参数,从而评估信号是否存在失真。
2.频域测试:频域测试是通过对信号进行傅里叶变换,将信号从时域转换到频域,来分析信号的频率响应。通过分析信号的功率谱密度、带宽等参数,可以评估信号在传输路径中存在的滤波、截止频率等问题。
3.时钟测试:时钟测试是通过观察时钟信号在传输路径中的形状和时间差异来分析时钟信号的完整性。时钟测试可以帮助识别时钟信号的抖动、时钟漂移等问题,从而评估时钟信号是否存在失真。 信号完整性分析建模。
信号完整性是指信号在传输过程中是否保持其原始形态和质量。在高速数字系统中,信号完整性非常重要,因为信号受到的噪声和失真可能会导致错误或故障。因此,信号完整性的分析和优化是数字系统设计中至关重要的一步。
以下是一些信号完整性的基础知识:
1.时域和频域
在信号完整性分析中,时域和频域都是非常重要的概念。时域描述随时间变化的信号波形,包括上升时间、下降时间,瞬态响应等等。频域描述信号的频率特性,包括截止频率、带宽、幅度响应等等。
2.常见的失真类型
在数字系统中,常见的失真类型包括内插失真、抖动、幅度失真和相位失真等。这些失真类型经常与信号的传输有关,因此分析信号的失真类型可以帮助设计人员确定性能和可靠性要求。 信号完整性分析概论;多端口矩阵测试信号完整性分析修理
常见的信号完整性测试常用的三种测试;江苏PCI-E测试信号完整性分析
信号完整性(英语:Signal integrity, SI)是对于电子信号质量的一系列度量标准。在数字电路中,一串二进制的信号流是通过电压(或电流)的波形来表示。然而,自然界的信号实际上都是模拟的,而非数字的,所有的信号都受噪音、扭曲和损失影响。在短距离、低比特率的情况里,一个简单的导体可以忠实地传输信号。而长距离、高比特率的信号如果通过几种不同的导体,多种效应可以降低信号的可信度,这样系统或设备不能正常工作。信号完整性工程是分析和缓解上述负面效应的一项任务,在所有水平的电子封装和组装,例如集成电路的内部连接、集成电路封装、印制电路板等工艺过程中,都是一项十分重要的活动。信号完整性考虑的问题主要有振铃(ringing)、串扰(crosstalk)、接地反弹、扭曲(skew)、信号损失和电源供应中的噪音。江苏PCI-E测试信号完整性分析