倾角仪:静态性能好,精度高,无累积误差,测量物体相对于地面垂直方向的倾角(1轴),其输出频率低,实时性较差,而且输出信号容易受噪声污染。 加速度计:静态性能好,精度高,更新频率快,测量与惯性有关的加速度,包括旋转、重力和线性加速度,然后对测量数据进行一次积分可以得到速度的估计,再次积分可以得到位置的估计。加速度计通过三角函数运算获得倾角值,但由于积分产生的漂移误差将随时间累积而无限制地增长导致积分后得到的数据不准确。 凌思科技为您提供先进的惯性导航系统,欢迎新老客户来电!青岛LINS620惯性导航模块
低精度MEMS惯性传感器作为消费电子类产品主要用在手机、GPS导航、游戏机、数码相机、音乐播放器、无线鼠标、PD、硬盘保护器、智能玩具、计步器、防盗系统。由于具有加速度测量、倾斜测量、振动测量甚至转动测量等基本测量功能,有待挖掘的消费电子应用会不断出现。 中级MEMS惯性传感器作为工业级及汽车级产品,则主要用于汽车电子稳定系统(ESP或ESC)GPS辅助导航系统,汽车安全气囊、车辆姿态测量、精密农业、工业自动化、大型医疗设备、机器人、仪器仪表、工程机械等。 高精度的MEMS惯性传感器作为凌思级和宇航级产品,主要要求高精度、全温区、抗冲击等指数。主要用于通讯卫星无线、导弹导引头、光学瞄准系统等稳定性应用;飞机/导弹飞行控制、姿态控制、偏航阻尼等控制应用、以及中程导弹制导、惯性GP战场机器人等。惯性导航价格先进的惯性导航系统,就选凌思科技,欢迎客户来电!
IMU的惯性导航实现原理基于牛顿凌思定律和旋转动力学原理,通过对物体的运动惯性进行测量与处理,计算出物体在空间中的加速度、方向和角速度等物理量,再通过数据处理和运算,得出精确的位置和运动信息。需要注意的是,IMU惯性导航的精确度和稳定性会受到物资的漂移、噪声、震荡、温度、轴偏差等因素的影响,因此需要进行校准和补偿等处理,以获得更高的精度和可靠性。 在实际应用中,IMU惯性导航常常与其他定位(如GPS)和控制系统(如PID控制)结合,形成多模式多传感器融合的智能导航系统。这种融合能够充分利用不同传感器的优势,实现更加准确可靠的定位、导航、避障、跟踪等功能。目前,IMU惯性导航技术已经在越来越多的领域得到应用,包括航空航天、凌思、航海、运动测量、虚拟现实、智能家居等。
早期的惯性测量单元是机械式陀螺仪,主要用于航海测量航向,后在二战时,德国飞弹采用陀螺仪确定方向和角速度,用加速度计测试加速度,从而控制飞行姿态,争取让飞弹落到想去的地方,但那时的仪器精度较低。而后1976年等提出了现代光纤陀螺仪的基本设想,以及后来的激光陀螺仪,使得陀螺仪灵敏度高,工作可靠,使得其在飞机、航天器和船舶的控制和导航上得到普遍的应用。 但IMU推动极速发展的趋势还是采用MEMS制程的传感器,MEMS中文叫微机电系统( Micro-Electro-Mechanical System),借用微电子加工的方式把庞大的惯性测量单元做到几微米甚至更小的尺寸,除此以外,还能借助微电子加工的优势获得更低的功耗,更轻的重量,更好的量产性和一致性。凌思科技为您提供先进的惯性导航系统,有想法的可以来电购买先进的惯性导航系统!
惯性测量装置IMU属于捷联式惯导,该系统有三个加速度传感器与三个角速度传感器(陀螺)组成,加速度计用来感受飞机相对于地垂线的加速度分量,角速度传感器用来感受飞机的角度信息,该子部件主要有两个A/D转换器AD7716BS与64K的E/EPROM存储器X25650构成,A/D转换器采用IMU各传感器的模拟变量,转换为数字信息后经过CPU计算后较后输出飞机俯仰角度、倾斜角度与侧滑角度,E/EPROM存储器主要存储了IMU各传感器的线性曲线图与IMU各传感器的件号与序号,部品在刚开机时,图像处理单元读取E/EPROM内的线性曲线参数为后续角度计算提供初始信息。先进的惯性导航系统,就选凌思科技,让您满意,欢迎您的来电!北京LINS358惯性导航传感器厂家
凌思科技致力于提供先进的惯性导航系统,有想法的可以来电购买先进的惯性导航系统!青岛LINS620惯性导航模块
新一代导航系统其实质是一种基于现代原子物理较新技术成就的微型惯性导航系统。惯性导航系统是人类较早发明的导航系统之一。早在1942年德国在V-2火箭上就首先应用了惯性导航技术。而美国凌思部高级研究计划局新一代导航系统主要通过集成在微型芯片上的原子陀螺仪、加速器和原子钟精确测量载体平台相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动计算出载体平台的瞬时速度、位置信息并为载体提供精确的授时服务。 有资料显示,2003年美国凌思部就斥资千万开始对原子惯性导航技术的研制。该技术一旦研制成功,将会使惯性导航达到前所未有的精度。具体来说,将会比目前较准确的凌思惯性导航的精度还要高出100到1000倍,而这将会对凌思定位、导航领域带来凌思性影响。由于该导航系统具有体积小、成本低、精度高、不依赖外界信息、不向外界辐射能量、抗干扰能力极强、隐蔽性好等特点,很有可能成为GPS技术的替代者。青岛LINS620惯性导航模块