您好,欢迎访问

商机详情 -

CDM应用在金融行业开发测试场景

来源: 发布时间:2024年11月22日

ADM兼容物理服务器、虚拟化、云平台的备份源,降低因混合IT环境而需要多套数据保护方案带来的成本压力和管理复杂性。支持国产化操作系统,支持主流平台下的数据库、文件数据保护,支持主流虚拟化平台的保护,支持国产云平台的保护。通过数据库虚拟化技术快速创建副本实现对备份数据的即时挂载恢复,提供业务应急响应能力和数据快速恢复能力,挂载恢复缩短了备份数据恢复的时间,可用于验证备份数据的有效性,直接提升了数据恢复验证的频率。同时,ADM可与第三方备份系统对接,改变传统手动编写脚本恢复数据的方式,通过设置定时策略,自动化实现备份数据恢复的有效性验证,协助企业建立高效的数据保护平台。副本数据管理CDM产品与数据备份产品的区别?CDM应用在金融行业开发测试场景

CDM应用在金融行业开发测试场景,上讯敏捷数据管理平台ADM

上讯敏捷数据管理平台(ADM)支持增量备份与全量快照合成技术,传统的备份方案大多采用周期性的“全量备份+增量备份”策略,其增量备份大多不可持续,经过一段时间就必须执行一次全量备份。因而传统的备份方案经常面临备份窗口过大的问题,而且其增量备份数据的恢复效率相对低下,因为每个时间点的恢复都依赖于上一次全备副本和上一次全备副本后的所有增量数据,恢复操作需要进行逐个迭代恢复。此外,过期增量数据的清理操作也受限于备份副本之间的依赖关系,不一定能及时被清理。而增量备份与全量快照合成技术,即首先执行全量备份,之后只对新增或改动过的数据进行增量备份,此增量备份数据是持续的,而且每个增量备份的数据副本将自动合成为全量快照副本,便于恢复。因此,增量备份与全量快照合成技术能够大幅度减少备份时间,节省备份数据所需的存储空间,且提升了恢复效率。前后比对数据备份产品构建了数据保护的基础防线。

CDM应用在金融行业开发测试场景,上讯敏捷数据管理平台ADM

数据闭环式流转与安全管控,保证全生命周期数据资产管理ADM贯穿数据收集、数据存储、数据加工、数据传输、数据使用、数据提供、数据回收的各个环节,集中管理存储资源、服务器资源,实现闭环式自动化管理流程,统一授权和全程监控,节省大量人力资源开销,减少了数据恢复的重复性工作,自动化流程任务编排降低了人为因素导致的数据泄露风险。基于数据库虚拟化技术,ADM实现了对数据库、文件、虚拟机等副本的分钟级创建,通过存储级快照快速保留数据副本的状态,实现数据版本的保留,跟踪数据流向。同时,数据副本支持时效性设置,当数据副本超出使用期限,ADM平台会自动停止使用或回收资源,实现对数据资产的全生命周期统一管理。

ADM贯穿数据收集、数据存储、数据加工、数据传输、数据使用、数据提供、数据回收的各个环节,集中管理存储资源、服务器资源,实现闭环式自动化管理流程,统一授权和全程监控,节省大量人力资源开销,减少了数据恢复的重复性工作,自动化流程任务编排降低了人为因素导致的数据泄露风险。基于数据库虚拟化技术,ADM实现了对数据库、文件、虚拟机等副本的分钟级创建,通过存储级快照快速保留数据副本的状态,实现数据版本的保留,跟踪数据流向。同时,数据副本支持时效性设置,当数据副本超出使用期限,ADM平台会自动停止使用或回收资源,实现对数据资产的全生命周期统一管理。上讯ADM产品的数据备份模块实现了数据库、文件、虚拟化平台的备份恢复。

CDM应用在金融行业开发测试场景,上讯敏捷数据管理平台ADM

数据分钟级提供,提升数据交付效率缩短开发周期通过部署ADM几分钟内即可创建一个数据量TB级别的虚拟数据库,进而,快速将测试数据传输到下游的开发测试环境,无需繁琐冗长的审核和等待,这一过程有效减少了下游开发测试场景中测试数据的准备时间,通常从以天计算缩短到以小时计算,时间效率提升明显,**缩短了开发测试时间,进而缩短产品的发布周期。(5)敏感数据定义识别与仿真***,保障数据流转环节的安全性通过智能定义敏感数据类型,自动发现和识别敏感数据,包括数据类型、内容、约束关系,灵活排序减少人为筛选,***精细定位敏感数据源。丰富的***算法与仿真的字典库相结合,保证***后数据仍具有业务属性,数据表间关系仍具有业务一致性,不影响数据挖掘分析数据价值。对涉及企业、个人信息的隐私数据,包括资金财产、个人、企业隐私的对照关系进行敏感数据识别,通过内置的***规则进行***处理,将数据敏感部分去隐私化,但并不失去数据挖掘的价值特征,减少数据隐私泄露带来的风险和损失,甚至降低可能发生的人身伤害和违法犯罪事件。上讯信息敏捷数据管理平台ADM荣获2023年网信自主创新“尖锋榜”产品奖。CDM应用在金融行业开发测试场景

上讯ADM产品的公开报价是多少?CDM应用在金融行业开发测试场景

在典型的重复数据删除技术中,根据不同的数据备份场景选择适合的重删策略与粒度方案。在确定重删策略与粒度后,会根据输入侧不同粒度(卷级、文件级、块级)的数据采取不同的数据切分策略,并依据任务级与全局指纹库提供自适应源端的全局重删算法与策略,当前支持源端块级、文件级重删和并行重删技术。源端重删是采用基于内容的可变长数据切分算法,通过对数据块进行哈希算法的***标记,即指纹(Fingerprint),在指纹库中寻找相同的指纹。如果存在相同指纹,则表示已保存了相同的数据块,ADM则不再保存此数据块,而是引用已存在的数据块,从而节省更多的备份空间。该算法还可以智能识别已修改的数据和未修改的数据,从而避免因修改数据位移而导致的未修改数据切分到新数据块中的问题,比较大限度地提升重删性能和重删率,为避免数据备份过程中冗余网络传输与存储开销,在源端设置粗粒度前置数据校验可以明显缩小备份传输过程中的数据冗余,目的在于不备份任意一个冗余数据。CDM应用在金融行业开发测试场景