首代小型化双光子显微镜在国际上获得小鼠自由行为过程中大脑神经元和突触的动态图像后,我们成功研制了第二代小型化双光子显微镜。它具有更大的成像视野和三维成像能力,可以清晰稳定地对自由活动小鼠三维脑区的数千个神经元进行成像,实现对同一批神经元的一个月追踪记录。通过对微光学系统的重新设计系统的。微物镜工作距离延长至1mm,实现无创成像。内嵌可拆卸的快速轴向扫描模块,可采集深度180微米的3D体成像和多平面快速切换的实时成像。该扫描模块由一个快速的电动变焦透镜和一对中继透镜组成,在不同深度成像时可保持放大倍率恒定。其变焦模块重量,研究人员可根据实验需求自由拆卸。此外,新版微型化成像探头可整体即时拔插,极大地简化了实验操作,避免了长周期实验时对动物的干扰。在重复装卸探头同一批神经元时,视场旋转角小于,边界偏差小于35微米。多光子显微镜能提供多种对比度机制。高速高分辨率多光子显微镜数据采集
多光子显微镜成像深度深、对比度高,在生物成像中具有重要意义,但通常需要较高的功率。结合时间传播的超短脉冲可以实现超快的扫描速度和较深的成像深度,但近红外波段的光本身会导致分辨率较低。基于多光子上转换材料和时间编码结构光显微镜的高速超分辨成像系统(MUTE-SIM)是由清华大学教授和北京大学彭研究员合作开发的。可实现50MHz的超高扫描速度,突破衍射极限,实现超分辨率成像。与普通荧光显微镜相比,该显微镜经过改进,只需要较低的激发功率。这种超快、低功耗、多光子超分辨率技术在高分辨率生物深层组织成像中具有长远的应用前景。美国离体多光子显微镜原理目前主要使用的多光子显微镜包括双光子显微镜和三光子显微镜。
多光子显微镜的前景巨大作为一个多学科交叉、知识密集、资金密集的高技术产业,多光子显微镜涉及医学、生物学、化学、物理学、电子学、工程学等学科,生产工艺相对复杂,进入门槛较高,是衡量一个国家制造业和高科技发展水平的重要标准之一。过去的5年,多光子显微镜市场集中,由于投产生产的成本较高,技术难度大,目前涌现的新企业不多。显微镜作为一个传统的高科技行业,其作用至今没有被其他技术颠覆,只是不断融合并发展相关技术,在医疗和其他精密检测领域发挥着更大的作用。显微镜的商业化发展已进入成熟期,主要需求来自教学、生命科学的研究及精密检测等,全球市场呈现平缓的增长态势。然而,**、、显微镜产品(如多光子显微镜、电子显微镜)正拉动市场需求,多光子显微镜市场发展潜力巨大。
对于双光子(2P)成像,散焦和近表面荧光激发是两个相对较大的深度限制因素,而对于三光子(3P)成像,这两个问题**减少。然而,由于荧光团的吸收截面远小于2P,三光子成像需要更高的脉冲能量才能获得与2P相同激发强度的荧光信号。功能性3P显微镜比结构性3P显微镜要求更高,后者需要更快的扫描速度以便及时采样神经元活动。为了在每个像素的停留时间内收集足够的信号,需要更高的脉冲能量。复杂的行为通常涉及大规模的大脑神经网络,这些网络既有本地连接,也有远程连接。为了将神经元的活动与行为联系起来,需要同时监测***分布的超大型神经元的活动。大脑中的神经网络将在几十毫秒内处理输入的刺激。为了理解这种快速神经元动力学,MPM需要快速成像神经元的能力。快速MPM方法可分为单束扫描技术和多束扫描技术。多光子显微镜,提高样品成像质量,降低样品损害程度。
有许多方法可以实现快速光栅扫描,例如使用振镜进行快速2D扫描,以及将振镜与可调电动透镜相结合进行快速3D扫描。而可调电动式镜头由于机械惯性的限制,无法在轴向快速切换焦点,影响成像速度。现在它可以被空间光调制器(SLM)取代。远程对焦也是实现3D成像的一种手段,如图2所示。LSU模块中,扫描振镜水平扫描,ASU模块包括物镜L1和反射镜M,通过调整M的位置实现轴向扫描该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速轴向扫描。为了获得更多的神经元成像,可以通过调整显微镜的物镜设计来放大FOV。然而,大NA和大FOV的物镜通常很重,不能快速移动以进行快速轴向扫描,因此大FOV系统依赖于远程聚焦、SLM和可调电动透镜。多光子显微镜市场集中,由于投产生产的成本较高,技术难度大,目前涌现的新企业不多。啮齿类多光子显微镜方案
使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。高速高分辨率多光子显微镜数据采集
对两个远距离(相距大于1-2mm)的成像部位,通常使用两条单独的路径进行成像;对于相邻区域,通常使用单个物镜的多光束进行成像。多光束扫描技术必须特别注意激发光束之间的串扰问题,这个问题可以通过事后光源分离方法或时空复用方法来解决。事后光源分离方法指的是用算法来分离光束消除串扰;时空复用方法指的是同时使用多个激发光束,每个光束的脉冲在时间上延迟,这样就可以暂时分离被不同光束激发的单个荧光信号。引入越多路光束就可以对越多的神经元进行成像,但是多路光束会导致荧光衰减时间的重叠增加,从而限制了区分信号源的能力;并且多路复用对电子设备的工作速率有很高的要求;大量的光束也需要更高的激光功率来维持近似单光束的信噪比,这会容易导致组织损伤。高速高分辨率多光子显微镜数据采集