光谱共焦传感器如何工作?共焦色度测量原理通过使用多透镜光学系统将多色白光聚焦到目标表面来工作。透镜的排列方式是通过控制色差(像差)将白光分散成单色光。工厂校准为每个波长分配了一定的偏差(特定距离)。只有精确聚焦在目标表面或材料上的波长才能用于测量。从目标表面反射的这种光通过共焦孔径到达光谱仪,该光谱仪检测并处理光谱变化。在整个传感器的测量范围内,实现了一个非常小的、恒定的光斑尺寸 ,通常 <10 µm。微型径向和轴向共焦版本可用于测量钻孔或钻孔的内表面,以及测量窄孔、小间隙和空腔。国内外已经有很多光谱共焦技术的研究成果发表;高采样速率光谱共焦信赖推荐
高像素传感器的设计取决于对焦水平和图像室内空间NA的要求。同时,在光谱共焦位移传感器中,屏幕分辨率通常采用全半宽来进行精确测量。高NA可以降低半宽,提高分辨率。因此,在设计超色差摄像镜头时,需要尽可能提高NA。高图像室内空间NA可以提高传感器系统的灯源使用率,并允许待测表面在相对大的角度或某些方向上倾斜。但是,同时提高NA也会导致球差扩大,并增加电子光学设计的优化难度。传感器的检测范围主要取决于超色差镜片的纵向色差。因为光谱仪在各个波长的像素应该是一致的 ,如果纵向色差与波长之间存在离散系统,这种离散系统也会对传感器的像素或灵敏度在不同波长上造成较大的差别,从而损害传感器的特性。通过使用自然散射的玻璃或者衍射光学元件(DOE)可以形成足够强的色差。然而,制造难度和成本相对较高,且在可见光范围内透射损耗也非常高。高采样速率光谱共焦信赖推荐光谱共焦技术在医学、材料科学、环境监测等领域有着广泛的应用。
光谱共焦位移传感器包括光源、透镜组和控制箱等组成部分 。光源发出一束白光,透镜组将其发散成一系列波长不同的单色光,通过同轴聚焦在一定范围内形成一个连续的焦点组 ,每个焦点的单色光波长对应一个轴向位置。当样品位于焦点范围内时,样品表面会聚焦后的光反射回去,这些反射回来的光再经过与镜头组焦距相同的聚焦镜再次聚焦后通过狭缝进入控制箱中的单色仪。因此,只有位于样品表面的焦点位置才能聚焦在狭缝上,单色仪将该波长的光分离出来,由控制箱中的光电组件识别并获取样品的轴向位置。采用高数值孔径的聚焦镜头可以使传感器达到较高分辨率,满足薄膜厚度分布测量要求。
光谱共焦传感器通过使用多透镜光学系统将多色白光聚焦到目标表面上来工作。透镜的排列方式是通过控制色差(像差)将白光分散成单色光。每个波长都有一定的偏差(特定距离)进行工厂校准。只有精确聚焦在目标表面或材料上的波长才能用于测量。经过共焦孔径从目标表面反射回来的光进入光谱仪进行检测和处理。在整个传感器的测量范围内,实现了一个非常小的、恒定的光斑尺寸,通常小于10微米。微型径向和轴向共焦版本可用于测量钻孔或钻孔内壁面,以及测量窄孔、小间隙和空腔 。光谱共集技术可以在不同领域的科学研究中发挥重要作用。
随着精密仪器制造业的发展,人们对于工业生产测量的要求越来越高,希望能够生产出具有精度高、适应性强、实时无损检测等特性的位移传感器,光谱共焦位移传感器的出现,使问题得到了解决,它是一种非接触式光电位移传感器,测量精度可达亚微米级甚至于更高,对于杂光等干扰光线,传感器并不敏感 ,具有较强的抵抗力,适应性强,且其在体积方面具有小型化的特点,因此应用前景十分大量。光学色散镜头是光谱共焦位移传感器的重要组成部分之一,镜头组性能参数对位移传感器的测量精度与分辨率起着决定性的作用。它通过对物体表面反射光的光谱分析,实现对物体表面位移变化的测量。高采样速率光谱共焦信赖推荐
光谱共焦技术的研究集中在光学系统的设计和优化,以及数据处理和成像算法的研究。高采样速率光谱共焦信赖推荐
在电化学领域,电极片的厚度是一个重要的参数,直接影响着电化学反应的效率和稳定性,我们将介绍光谱共焦位移传感器对射测量电极片厚度的具体方法。首先,我们需要准备一块待测电极片和光谱共焦位移传感器。将电极片放置在测量平台上,并调整传感器的位置,使其与电极片表面保持垂直。接下来,通过软件控制传感器进行扫描,获取电极片表面的光谱信息。光谱共焦位移传感器可以实现纳米级的分辨率,因此可以准确地测量电极片表面的高度变化。在获取了电极片表面的光谱信息后,我们可以利用反射光谱的特性来计算电极片的厚度。通过分析反射光谱的强度和波长分布,我们可以得到电极片表面的高度信息。同时,还可以利用光谱共焦位移传感器的对射测量功能,实现对电极片厚度的精确测量。通过对射测量,可以消除传感器位置和角度带来的误差,从而提高测量的准确性和稳定性。除了利用光谱共焦位移传感器进行对射测量外,我们还可以结合图像处理技术对电极片表面的光谱信息进行进一步分析。通过图像处理算法,可以提取出电极片表面的特征信息,进而计算出电极片的厚度。这种方法不仅可以提高测量的准确性,还可以实现对电极片表面形貌的三维测量。高采样速率光谱共焦信赖推荐