您好,欢迎访问

商机详情 -

有哪些光谱共焦的精度

来源: 发布时间:2024年09月22日

光谱共焦测量技术由于其高精度、允许被测表面有更大的倾斜角、测量速度快、实时性高、对被测表面状况要求低以及高分辨率等特点,已成为工业测量的热门传感器,在生物医学、材料科学、半导体制造、表面工程研究、精密测量和3C电子等领域广泛应用。本次测量场景采用了创视智能TS-C1200光谱共焦传感头和CCS控制器。TS-C系列光谱共焦位移传感器能够实现0.025 µm的重复精度、±0.02%的线性精度、30kHz的采样速度和±60°的测量角度,适用于镜面、透明、半透明、膜层、金属粗糙面、多层玻璃等材料表面,支持485、USB、以太网,模拟量的数据传输接口。光谱共焦技术材料科学领域可以用于材料的性能测试和分析。有哪些光谱共焦的精度

背景技术:光学测量与成像技术,通过光源、被测物体和探测器三点共,去除焦点以外的杂散光,得到比传统宽场显微镜更高的横向分辨率,同时由于引入圆孔探测具有了轴向深度层析能力,通过焦平面的上下平移从而得到物体的微观三维空间结构信息。这种三维成像能力使得共焦三维显微成像技背景技术:光学测量与成像技术,通过光源、被测物体和探测器三点共,去除焦点以外的杂散光,得到比传统宽场显微镜更高的横向分辨率,同时由于引入圆孔探测具有了轴向深度层析能力,通过焦平面的上下平移从而得到物体的微观三维空间结构信息。这种三维成像能力使得共焦三维显微成像技术已经广泛应用于医学、材料分析、工业探测及计量等各种不同的领域之中。现有的光学测量术已经广泛应用于医学、材料分析、工业探测及计量等各种不同的领域之中。现有的光学测量与成像技术主要激光成像,其功耗大、成本高,而且精度较差,难以胜任复杂异形表面(如曲面、弧面、凸凹沟槽等)的高精度、稳定检测或者成像的光谱共焦成像技术比激光成像具有更高的精度,而且能够降低功耗和成本但现有的光谱共焦检测设备大都是静态检测,检测效率低,而且难以胜任复杂异形表面 。有哪些光谱共焦的精度光谱共焦厚度检测系统可以实现厚度的非接触式测量。

 靶丸内表面轮廓是激光核聚变靶丸关键参数之一,需要进行精密检测。本文基于白光共焦光谱和精密气浮轴系,分析了靶丸内表面轮廓测量的基本原理,并建立了相应的白光共焦光谱测量方法。同时,作者还搭建了靶丸内表面轮廓测量实验装置,并利用靶丸光学图像的辅助调心方法,实现了靶丸内表面低阶轮廓的精密测量,获得了准确的靶丸内表面轮廓曲线。作者在实验中验证了测量结果的可靠性,并进行了不确定度分析,结果表明,白光共焦光谱能够实现靶丸内表面低阶轮廓的精密测量 。

在容器玻璃生产过程中,圆度和壁厚是重要的质量特征,需要进行检查。任何有缺陷的容器都会被判定为不合格产品并返回到玻璃熔体中。为了实现快速的非接触式测量,并确保不损坏瓶子,需要高处理速度。对于这种测量任务,光谱共焦传感器是一种合适的选择。该系统在两个点上同步测量并通过EtherCAT接口实时输出数据 ,厚度校准功能允许在传感器的整个测量范围内进行精确的厚度测量。此外,自动曝光控制可以实现对不同玻璃颜色的测量的稳定性。光谱共焦技术的发展将有助于解决现实生产和生活中的问题。

本文通过对比测试方法,考核了基于白光共焦光谱技术的靶丸外表面轮廓测量精度。图5(a)比较了原子力显微镜轮廓仪和白光共焦光谱轮廓仪测量曲线 ,二者低阶轮廓整体相似性高,但在靶丸赤道附近的高频段轮廓测量上存在一定的偏差。此外,白光共焦光谱的信噪比也相对较低,只适合测量靶丸表面低阶的轮廓误差。图5(b)比较了原子力显微镜轮廓仪测量数据和白光共焦光谱轮廓仪测量数据的功率谱曲线,发现两种方法在模数低于100的功率谱范围内测量结果一致性较好,但当模数大于100时,白光共焦光谱的测量数据大于原子力显微镜的测量数据,这反映了白光共焦光谱仪在高频段测量数据信噪比相对较差的特点。由于共焦光谱检测数据受多种因素影响,高频随机噪声可达100nm左右。光谱共焦技术主要来自共焦显微术,早期由美国学者 Minsky 提出。平面度测量 光谱共焦位移计

光谱共焦技术可以在环境保护中发挥重要作用。有哪些光谱共焦的精度

物体的表面形貌可以通过测量距离来确定,光谱共焦传感器可以用于测量气缸套的圆度、直径、粗糙度和表面结构。当测量对象包含不同类型的材料时,尽管距离值保持不变,但反射率会突出材料之间的差异。划痕和不平整会影响反射率并变得可见。系统会创建目标及其精细结构的精确图像,只要检测到信号强度的变化。除了距离测量外,还可以使用信号强度进行测量,这可以实现对精细结构的可视化。通过保持曝光时间不变,可以获得有关表面评估的附加信息,而这在距离测量时是不可能的 。有哪些光谱共焦的精度

标签: 光谱共焦

扩展资料

光谱共焦热门关键词

光谱共焦企业商机

光谱共焦行业新闻

推荐商机