由于不同性质和形态的薄膜对系统的测量量程和精度的需求不尽相同,因而多种测量方法各有优劣,难以一概而论。,按照薄膜厚度的增加,适用的测量方式分别为分光光度法、椭圆偏振法、共聚焦法和干涉法。对于小于1μm的较薄薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较适合。而对于小于200nm的薄膜,由于透过率曲线缺少峰谷值,椭圆偏振法结果更加可靠。基于白光干涉原理的光学薄膜厚度测量方案目前主要集中于测量透明或者半透明薄膜,通过使用不同的解调技术处理白光干涉的图样,得到待测薄膜厚度。本章在详细研究白光干涉测量技术的常用解调方案、解调原理及其局限性的基础上,分析得到了常用的基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,我们提出了基于干涉光谱单峰值波长移动的白光干涉测量解调技术。白光干涉膜厚测量技术可以实现对不同材料的薄膜进行测量;膜厚仪诚信合作
自上世纪60年代开始,西方的工业生产线广泛应用基于X及β射线、近红外光源开发的在线薄膜测厚系统。随着质检需求的不断增长,20世纪70年代后,电涡流、超声波、电磁电容、晶体振荡等多种膜厚测量技术相继问世。90年代中期,随着离子辅助、离子束溅射、磁控溅射、凝胶溶胶等新型薄膜制备技术的出现,光学检测技术也不断更新迭代,以椭圆偏振法和光度法为主导的高精度、低成本、轻便、高速稳固的光学检测技术迅速占领日用电器和工业生产市场,并发展出了个性化定制产品的能力。对于市场占比较大的微米级薄膜,除了要求测量系统具有百纳米级的测量准确度和分辨率之外,还需要在存在不规则环境干扰的工业现场下具备较高的稳定性和抗干扰能力。高速膜厚仪高精度的白光干涉膜厚仪通常采用Michelson干涉仪的结构。
对同一靶丸的相同位置进行白光垂直扫描干涉实验,如图4-3所示。通过控制光学轮廓仪的运动机构带动干涉物镜在垂直方向上移动,测量光线穿过靶丸后反射到参考镜与到达基底后直接反射回参考镜的光线之间的光程差。显然,越偏离靶丸中心的光线测得的有效壁厚越大,其光程差也越大,但这并不表示靶丸壳层的厚度。只有当垂直穿过靶丸中心的光线测得的光程差才对应于靶丸的上、下壳层的厚度。因此,在进行白光垂直扫描干涉实验时,需要选择穿过靶丸中心的光线位置进行测量,这样才能准确地测量靶丸壳层的厚度。此外,通过控制干涉物镜在垂直方向上移动,可以测量出不同位置的厚度值,从而得到靶丸壳层厚度的空间分布情况。
为限度提高靶丸内爆压缩效率 ,期望靶丸所有几何参数、物性参数均为理想球对称状态。因此,需要对靶丸壳层厚度分布进行精密的检测。靶丸壳层厚度常用的测量手法有X射线显微辐照法、激光差动共焦法、白光干涉法等。下面分别介绍了各个方法的特点与不足,以及各种测量方法的应用领域。白光干涉法[30]是以白光作为光源,宽光谱的白光准直后经分光棱镜分成两束光,一束光入射到参考镜。一束光入射到待测样品。由计算机控制压电陶瓷(PZT)沿Z轴方向进行扫描,当两路之间的光程差为零时,在分光棱镜汇聚后再次被分成两束,一束光通过光纤传输,并由光谱仪收集,另一束则被传递到CCD相机,用于样品观测。利用光谱分析算法对干涉信号图进行分析得到薄膜的厚度。该方法能应用靶丸壳层壁厚的测量,但是该测量方法需要已知靶丸壳层材料的折射率,同时,该方法也难以实现靶丸壳层厚度分布的测量。增加光路长度可以提高仪器分辨率,但同时也会更容易受到振动等干扰,需要采取降噪措施。
2e(n22一n12sin2i)1/2+δ’=kλ,k=1,2,3,4,5...(1)
2e(n22一n12sin2i)1/2+δ’=(2k+1)λ/2,k=0,1,2,3,4,...(2)
当膜的厚度e与波长A不可比拟时,有下列情况出现:(1)膜厚e远远大于波长^时,由于由同一波列分解出来的2列波的光程差已超过相干民度.因而不能相遇,故不能发生干涉…,没有明纹或暗纹出现.(2)膜厚e远远小于波长^时,相干条件(1),(2)式中e一0,2相干光束之间的光程差已主要受半波损失d7的影响,而膜厚e和入射角i实际上对光程差已没有贡献.若半波损失∥存在,就发生相消干涉,反之,就发生相长干涉…,故观察到的要么全是明纹,要么全是暗纹. 这种膜厚仪可以测量大气压下 。薄膜干涉膜厚仪市场价格
白光干涉膜厚仪是用于测量薄膜厚度的一种仪器,可用于透明薄膜和平行表面薄膜的测量。膜厚仪诚信合作
基于白光干涉光谱单峰值波长移动的锗膜厚度测量方案研究 :在对比研究目前常用的白光干涉测量方案的基础上,我们发现当两干涉光束的光程差非常小导致其干涉光谱只有一个干涉峰时,常用的基于两相邻干涉峰间距的解调方案不再适用。为此,我们提出了适用于极小光程差的基于干涉光谱单峰值波长移动的测量方案。干涉光谱的峰值波长会随着光程差的增大出现周期性的红移和蓝移,当光程差在较小范围内变化时,峰值波长的移动与光程差成正比。根据这一原理,搭建了光纤白光干涉温度传感系统对这一测量解调方案进行验证,得到了光纤端面半导体锗薄膜的厚度。实验结果显示锗膜的厚度为,与台阶仪测量结果存在,这是因为薄膜表面本身并不光滑,台阶仪的测量结果只能作为参考值。锗膜厚度测量误差主要来自光源的波长漂移和温度控制误差。膜厚仪诚信合作