您好,欢迎访问

商机详情 -

测量膜厚仪使用误区

来源: 发布时间:2024年03月02日

本文主要以半导体锗和贵金属金两种材料为对象,研究了白光干涉法、表面等离子体共振法和外差干涉法实现纳米级薄膜厚度准确测量的可行性。由于不同材料薄膜的特性不同,所适用的测量方法也不同。半导体锗膜具有折射率高,在通信波段(1550nm附近)不透明的特点,选择采用白光干涉的测量方法;而厚度更薄的金膜的折射率为复数,且能激发明显的表面等离子体效应,因而可借助基于表面等离子体共振的测量方法;为了进一步改善测量的精度,论文还研究了外差干涉测量法,通过引入高精度的相位解调手段,检测P光与S光之间的相位差提升厚度测量的精度。高精度的白光干涉膜厚仪通常采用Michelson干涉仪的结构。测量膜厚仪使用误区

测量膜厚仪使用误区,膜厚仪

光谱拟合法易于应用于测量,但由于使用了迭代算法,因此其优缺点在很大程度上取决于所选择的算法。随着遗传算法、模拟退火算法等全局优化算法的引入,被用于测量薄膜参数。该方法需要一个较好的薄膜光学模型(包括色散系数、吸收系数、多层膜系统),但实际测试过程中薄膜的色散和吸收的公式通常不准确,特别是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。因此,通常使用简化模型,全光谱拟合法在实际应用中不如极值法有效。此外,该方法的计算速度慢,不能满足快速计算的要求。高采样速率膜厚仪随着技术的进步和应用领域的拓展,白光干涉膜厚仪的性能和功能将不断提高和扩展。

测量膜厚仪使用误区,膜厚仪

傅里叶变换是白光频域解调方法中一种低精度的信号解调方法。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纤法布里-珀罗传感器的解调。因此,该解调方案的原理是通过傅里叶变换得到频域的峰值频率从而获得光程差,进而得到待测物理量的信息。傅里叶变换解调方案的优点是解调速度较快,受干扰信号的影响较小。但是其测量精度较低。根据数字信号处理FFT(快速傅里叶变换)理论,若输入光源波长范围为λ1,λ2,则所测光程差的理论小分辨率为λ1λ2/(λ2−λ1),所以此方法主要应用于对解调精度要求不高的场合。傅里叶变换白光干涉法是对傅里叶变换法的改进。该方法总结起来就是对采集到的光谱信号做傅里叶变换,然后滤波、提取主频信号后进行逆傅里叶变换,然后做对数运算,并取其虚部做相位反包裹运算,由获得的相位得到干涉仪的光程差。该方法经过实验证明其测量精度比傅里叶变换高。

光学测厚方法结合了光学、机械、电子和计算机图像处理技术,以光波长为测量基准,从原理上保证了纳米级的测量精度。由于光学测厚是非接触式的测量方法,因此被用于精密元件表面形貌及厚度的无损测量。针对薄膜厚度的光学测量方法,可以按照光吸收、透反射、偏振和干涉等不同光学原理分为分光光度法、椭圆偏振法、干涉法等多种测量方法。不同的测量方法各有优缺点和适用范围。因此,有一些研究采用了多通道式复合测量法,结合多种测量方法,例如椭圆偏振法和光度法结合的光谱椭偏法,彩色共焦光谱干涉和白光显微干涉的结合法等。操作之前需要专业技能和经验的培训和实践。

测量膜厚仪使用误区,膜厚仪

Michelson干涉物镜,准直透镜将白光缩束准直后垂直照射到待测晶圆上,反射光之间相互发生干涉,经准直镜后干涉光强进入光纤耦合单元,完成干涉部分。光纤传输的干涉信号进入光谱仪,计算机定时从光谱仪中采集光谱信号,获取诸如光强、反射率等信息,计算机对这些信息进行信号处理,滤除高频噪声信息,然后对光谱信息进行归一化处理,利用峰值对应的波长值,计算晶圆膜厚。光源采用氙灯光源,选择氙灯作为光源具有以下优点:氙灯均为连续光谱,且光谱分布几乎与灯输入功率变化无关,在寿命期内光谱能量分布也几乎不变;氙灯的光、电参数一致性好,工作状态受外界条件变化的影响小;氙灯具有较高的电光转换效率,可以输出高能量的平行光等。操作需要一定的专业素养和经验,需要进行充分的培训和实践。什么是膜厚仪

它可测量大气压下1纳米到1毫米范围内的薄膜厚度。测量膜厚仪使用误区

光具有相互叠加的特性,发生干涉的两束光在一些地方振动加强,而在另一些地方振动减弱,并产生规则的明暗交替变化。干涉测量需要满足三个相干条件:频率一致、振动方向一致、相位差稳定一致。与激光光源相比,白光光源的相干长度较短,通常在几微米到几十微米内。白光干涉的条纹有一个固定的位置,对应于光程差为零的平衡位置,并在该位置白光输出光强度具有最大值。通过探测光强最大值,可以实现样品表面位移的精密测量。白光垂直扫描干涉、白光反射光谱等技术,具有抗干扰能力强、稳定性好、动态范围大、结构简单、成本低廉等优点,并广泛应用于薄膜三维形貌测量和薄膜厚度精密测量等领域。测量膜厚仪使用误区

标签: 光谱共焦