光谱法是一种以光的干涉效应为基础的薄膜厚度测量方法,分为反射法和透射法两种类型。入射光在薄膜-基底-薄膜界面上的反射和透射会引起多光束干涉效应,不同特性的薄膜材料的反射率和透过率曲线是不同的,并且在全光谱范围内与厚度一一对应。因此,可以根据这种光谱特性来确定薄膜的厚度和光学参数。光谱法的优点是可以同时测量多个参数,并能有效地排除解的多值性,测量范围广,是一种无损测量技术。其缺点是对样品薄膜表面条件的依赖性强,测量稳定性较差,因此测量精度不高,对于不同材料的薄膜需要使用不同波段的光源等。目前,这种方法主要用于有机薄膜的厚度测量。白光干涉膜厚仪需要校准,标准样品的选择和使用至关重要。高精度膜厚仪使用方法
光纤白光干涉测量使用的是宽谱光源。在选择光源时,需要重点考虑光源的输出光功率和中心波长的稳定性。由于本文所设计的解调系统是通过测量干涉峰值的中心波长移动来实现的,因此光源中心波长的稳定性对实验结果会产生很大的影响。实验中我们选择使用由INPHENIX公司生产的SLED光源,相对于一般的宽带光源具有输出功率高、覆盖光谱范围宽等优点。该光源采用+5V的直流供电,标定中心波长为1550nm,且其输出功率在一定范围内可调。驱动电流可以达到600mA。高速膜厚仪找哪家该仪器的工作原理是通过测量反射光的干涉来计算膜层厚度,基于反射率和相位差。
光谱拟合法易于应用于测量,但由于使用了迭代算法,因此其优缺点在很大程度上取决于所选择的算法。随着遗传算法、模拟退火算法等全局优化算法的引入,被用于测量薄膜参数。该方法需要一个较好的薄膜光学模型(包括色散系数、吸收系数、多层膜系统),但实际测试过程中薄膜的色散和吸收的公式通常不准确,特别是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。因此,通常使用简化模型,全光谱拟合法在实际应用中不如极值法有效。此外,该方法的计算速度慢,不能满足快速计算的要求。
白光反射光谱探测模块中,入射光经过分光镜1分光后,一部分光照射到靶丸表面,靶丸壳层上、下表面的反射光经物镜、分光镜1、聚焦透镜、分光镜2后,一部分光聚焦到光纤端面并到达光谱仪探测器,实现了靶丸壳层白光干涉光谱的测量。另一部分光到达CCD探测器,获得靶丸表面的光学图像。靶丸吸附转位模块和三维运动模块分别用于靶丸的吸附定位以及靶丸特定角度的转位和靶丸位置的调整。在测量过程中,将靶丸放置于轴系吸嘴前端,通过微型真空泵将其吸附于吸嘴上;然后,移动位移平台,将靶丸移动至CCD视场中心,Z向位移台可调整视场清晰度;利用光谱仪探测靶丸壳层的白光反射光谱;靶丸在轴系的带动下,平稳转动到特定角度,为消除轴系回转误差所带来的误差,可通过调整调心结构,使靶丸定点位于视场中心并采集其白光反射光谱。重复以上步骤,可实现靶丸特定位置或圆周轮廓白光反射光谱数据的测量。为减少外界干扰和震动所引起的测量误差,该装置放置于气浮平台上,通过高性能的隔振效果,保证了测量结果的稳定性。光路长度越长,仪器分辨率越高,但也越容易受到干扰因素的影响,需要采取降噪措施。
与激光光源相比以白光的宽光谱光源由于具有短相干长度的特点使得两光束只有在光程差极小的情况下才能发生干涉因此不会产生干扰条纹。同时由于白光干涉产生的干涉条纹具有明显的零光程差位置避免了干涉级次不确定的问题。本文以白光干涉原理为理论基础对单层透明薄膜厚度测量尤其对厚度小于光源相干长度的薄膜厚度测量进行了研究。首先从白光干涉测量薄膜厚度的原理出发、分别详细阐述了白光干涉原理和薄膜测厚原理。接着在金相显微镜的基础上构建了垂直型白光扫描系统作为实验中测试薄膜厚度的仪器并利用白光干涉原理对的位移量进行了标定。白光干涉膜厚仪的应用非常广,特别是在半导体、光学、电子和化学等领域。国产膜厚仪厂家
广泛应用于半导体、光学、电子、化学等领域,为研究和开发提供了有力的手段。高精度膜厚仪使用方法
根据以上分析,白光干涉时域解调方案的优点如下:①能够实现测量;②抗干扰能力强,系统的分辨率与光源输出功率的波动、光源波长的漂移以及外界环境对光纤的扰动等因素无关;③测量精度与零级干涉条纹的确定精度以及反射镜的精度有关;④结构简单,成本较低。但是,时域解调方法需要借助扫描部件移动干涉仪一端的反射镜来进行相位补偿,因此扫描装置的分辨率会影响系统的精度。采用这种解调方案的测量分辨率一般在几个微米,要达到亚微米的分辨率则主要受机械扫描部件的分辨率和稳定性所限制。文献[46]报道的位移扫描的分辨率可以达到0.54微米。然而,当所测光程差较小时,F-P腔前后表面干涉峰值相距很近,难以区分,此时时域解调方案的应用受到了限制。高精度膜厚仪使用方法