本文温所研究的锗膜厚度约300nm,导致其白光干涉输出光谱只有一个干涉峰,此时常规基于相邻干涉峰间距解调的方案(如峰峰值法等)将不再适用。为此,我们提出了一种基于单峰值波长移动的白光干涉测量方案,并设计搭建了膜厚测量系统。温度测量实验结果表明,峰值波长与温度变化之间具有良好的线性关系。利用该测量方案,我们测得实验用锗膜的厚度为338.8nm,实验误差主要来自于温度控制误差和光源波长漂移。通过对纳米级薄膜厚度的测量方案研究,实现了对锗膜和金膜的厚度测量。本文主要的创新点是提出了白光干涉单峰值波长移动的解调方案,并将其应用于极短光程差的测量。该仪器的工作原理是通过测量反射光的干涉来计算膜层厚度,基于反射率和相位差。国内膜厚仪供应链
白光干涉法和激光光源相比具有短相干长度的特点,使得两束光只有在光程差非常小的情况下才能发生干涉,因此不会产生干扰条纹。同时,白光干涉产生的干涉条纹具有明显的零光程差位置,避免了干涉级次不确定的问题。本文基于白光干涉原理对单层透明薄膜厚度测量进行了研究,特别是对厚度小于光源相干长度的薄膜进行了探究。文章首先详细阐述了白光干涉原理和薄膜测厚原理,然后在金相显微镜的基础上构建了一种型垂直白光扫描系统,作为实验中测试薄膜厚度的仪器,并利用白光干涉原理对位移量进行了标定。 如何选膜厚仪白光干涉膜厚仪广泛应用于半导体、光学、电子、化学等领域,为研究和开发提供了有力的手段。
光谱拟合法易于应用于测量,但由于使用了迭代算法,因此其优缺点在很大程度上取决于所选择的算法。随着遗传算法、模拟退火算法等全局优化算法的引入,被用于测量薄膜参数。该方法需要一个较好的薄膜光学模型(包括色散系数、吸收系数、多层膜系统),但实际测试过程中薄膜的色散和吸收的公式通常不准确,特别是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。因此,通常使用简化模型,全光谱拟合法在实际应用中不如极值法有效。此外,该方法的计算速度慢,不能满足快速计算的要求。
薄膜是一种特殊的微结构,在电子学、摩擦学、现代光学等领域得到了广泛应用,因此薄膜的测试技术变得越来越重要。尤其是在厚度这一特定方向上,尺寸很小,基本上都是微观可测量的。因此,在微纳测量领域中,薄膜厚度的测试是一个非常重要且实用的研究方向。在工业生产中,薄膜的厚度直接影响薄膜是否能正常工作。在半导体工业中,膜厚的测量是硅单晶体表面热氧化厚度以及平整度质量控制的重要手段。薄膜的厚度会影响其电磁性能、力学性能和光学性能等,因此准确地测量薄膜的厚度成为一种关键技术。总的来说,白光干涉膜厚仪是一种应用广、具有高精度和可靠性的薄膜厚度测量仪器。
白光干涉光谱分析是目前白光干涉测量的一个重要方向。此项技术通过使用光谱仪将对条纹的测量转变为对不同波长光谱的测量,分析被测物体的光谱特性,得到相应的长度信息和形貌信息。与白光扫描干涉术相比,它不需要大量的扫描过程,因此提高了测量效率,并减小了环境对其影响。此项技术能够测量距离、位移、块状材料的群折射率以及多层薄膜厚度等。白光干涉光谱分析基于频域干涉的理论,采用白光作为宽波段光源,经过分光棱镜折射为两束光。这两束光分别经由参考面和被测物体入射,反射后再次汇聚合成,并由色散元件分光至探测器,记录频域干涉信号。这个光谱信号包含了被测表面信息,如果此时被测物体是薄膜,则薄膜的厚度也包含在光谱信号当中。白光干涉光谱分析将白光干涉和光谱测量的速度结合起来,形成了一种精度高且速度快的测量方法。随着技术的进步和应用领域的拓展,白光干涉膜厚仪的性能和功能将不断提高和扩展。本地膜厚仪哪个品牌好
白光干涉膜厚仪的应用非常广,特别是在半导体、光学、电子和化学等领域。国内膜厚仪供应链
本文主要研究了如何采用白光干涉法、表面等离子体共振法和外差干涉法来实现纳米级薄膜厚度的准确测量,研究对象为半导体锗和贵金属金两种材料。由于不同材料薄膜的特性差异,所适用的测量方法也会有所不同。对于折射率高,在通信波段(1550nm附近)不透明的半导体锗膜,采用白光干涉的测量方法;而对于厚度更薄的金膜,由于其折射率为复数,且具有表面等离子体效应,所以采用基于表面等离子体共振的测量方法会更合适。为了进一步提高测量精度,本文还研究了外差干涉测量法,通过引入高精度的相位解调手段来检测P光与S光之间的相位差,以提高厚度测量的精度。国内膜厚仪供应链