光纤白光干涉此次实验所设计的解调系统是通过检测干涉峰值的中心波长的移动实现的,所以光源中心波长的稳定性将对实验结果产生很大的影响。实验中我们所选用的光源是由INPHENIX公司生产的SLED光源,相对于一般的宽带光源具有输出功率高、覆盖光谱范围宽等特点。该光源采用+5V的直流供电,标定中心波长为1550nm,且其输出功率在一定范围内是可调的,驱动电流可以达到600mA。测量使用的是宽谱光源。光源的输出光功率和中心波长的稳定性是光源选取时需要重点考虑的参数。当光路长度增加,仪器的分辨率越高,也越容易受到静态振动等干扰因素的影响,需采取一些减小噪声的措施。测量膜厚仪安装操作注意事项
在对目前常用的白光干涉测量方案进行比较研究后发现,当两个干涉光束的光程差非常小导致干涉光谱只有一个峰时,基于相邻干涉峰间距的解调方案不再适用。因此,我们提出了一种基于干涉光谱单峰值波长移动的测量方案,适用于极小光程差。这种方案利用干涉光谱的峰值波长会随光程差变化而周期性地出现红移和蓝移,当光程差在较小范围内变化时,峰值波长的移动与光程差成正比。我们在光纤白光干涉温度传感系统上验证了这一测量方案,并成功测量出光纤端面半导体锗薄膜的厚度。实验表明,锗膜厚度为一定值,与台阶仪测量结果存在差异是由于薄膜表面本身并不光滑,台阶仪的测量结果只能作为参考值。误差主要来自光源的波长漂移和温度误差。膜厚仪性价比高白光干涉膜厚仪是一种用来测量透明和平行表面薄膜厚度的仪器。
白光光谱法克服了干涉级次的模糊识别问题,具有测量范围大,连续测量时波动范围小的特点,但在实际测量中,由于测量误差、仪器误差、拟合误差等因素,干涉级次的测量精度仍其受影响,会出现干扰级次的误判和干扰级次的跳变现象。导致公式计算得到的干扰级次m值与实际谱峰干涉级次m'(整数)之间有误差。为得到准确的干涉级次,本文依据干涉级次的连续特性设计了校正流程图,获得了靶丸壳层光学厚度的精确值。导入白光干涉光谱测量曲线。
本文主要以半导体锗和贵金属金两种材料为对象,研究了白光干涉法、表面等离子体共振法和外差干涉法实现纳米级薄膜厚度准确测量的可行性。由于不同材料薄膜的特性不同,所适用的测量方法也不同。半导体锗膜具有折射率高,在通信波段(1550nm附近)不透明的特点,选择采用白光干涉的测量方法;而厚度更薄的金膜的折射率为复数,且能激发明显的表面等离子体效应,因而可借助基于表面等离子体共振的测量方法;为了进一步改善测量的精度,论文还研究了外差干涉测量法,通过引入高精度的相位解调手段,检测P光与S光之间的相位差提升厚度测量的精度。随着技术的不断进步和应用领域的扩展,白光干涉膜厚仪的性能和功能将得到进一步提高。
干涉法和分光光度法都是基于相干光形成等厚干涉条纹的原理来确定薄膜厚度和折射率。不同于薄膜自发产生的等倾干涉,干涉法是通过设置参考光路来形成参考平面和测量平面间干涉条纹,因此其相位信息包含两个部分,分别是由扫描高度引起的附加相位和由薄膜内部多次反射引起的膜厚相位。干涉法的测量光路使用面阵CCD接收参考平面和测量平面间相干波面的干涉光强分布。与以上三种点测量方式不同,干涉法能够一次性生成薄膜待测区域的表面形貌信息,但因存在大量轴向扫描和数据解算,完成单次测量的时间相对较长。操作需要一定的专业基础和经验,需要进行充分的培训和实践。白光干涉膜厚仪测量方法
可配合不同的软件进行数据处理和分析,如建立数据库、统计数据等。测量膜厚仪安装操作注意事项
白光反射光谱探测模块中,入射光经过分光镜1分光后,一部分光照射到靶丸表面,靶丸壳层上、下表面的反射光经物镜、分光镜1、聚焦透镜、分光镜2后,一部分光聚焦到光纤端面并到达光谱仪探测器,实现了靶丸壳层白光干涉光谱的测量。另一部分光到达CCD探测器,获得靶丸表面的光学图像。靶丸吸附转位模块和三维运动模块分别用于靶丸的吸附定位以及靶丸特定角度的转位和靶丸位置的调整。在测量过程中,将靶丸放置于轴系吸嘴前端,通过微型真空泵将其吸附于吸嘴上;然后,移动位移平台,将靶丸移动至CCD视场中心,Z向位移台可调整视场清晰度;利用光谱仪探测靶丸壳层的白光反射光谱;靶丸在轴系的带动下,平稳转动到特定角度,为消除轴系回转误差所带来的误差,可通过调整调心结构,使靶丸定点位于视场中心并采集其白光反射光谱。重复以上步骤,可实现靶丸特定位置或圆周轮廓白光反射光谱数据的测量。为减少外界干扰和震动所引起的测量误差,该装置放置于气浮平台上,通过高性能的隔振效果,保证了测量结果的稳定性。测量膜厚仪安装操作注意事项