为了提高靶丸内爆压缩效率,需要确保靶丸所有几何参数和物性参数都符合理想的球对称状态,因此需要对靶丸壳层厚度分布进行精密检测。常用的测量手法有X射线显微辐照法、激光差动共焦法和白光干涉法等。白光干涉法是以白光作为光源,分成入射到参考镜和待测样品的两束光,在计算机管控下进行扫描和干涉信号分析,得到膜的厚度信息。该方法适用于靶丸壳层厚度的测量,但需要已知壳层材料的折射率,且难以实现靶丸壳层厚度分布的测量。白光干涉膜厚仪是一种可用于测量透明和平行表面薄膜厚度的仪器。白光干涉膜厚仪的原理
本文主要研究了如何采用白光干涉法、表面等离子体共振法和外差干涉法来实现纳米级薄膜厚度的准确测量,研究对象为半导体锗和贵金属金两种材料。由于不同材料薄膜的特性差异,所适用的测量方法也会有所不同。对于折射率高,在通信波段(1550nm附近)不透明的半导体锗膜,采用白光干涉的测量方法;而对于厚度更薄的金膜,由于其折射率为复数,且具有表面等离子体效应,所以采用基于表面等离子体共振的测量方法会更合适。为了进一步提高测量精度,本文还研究了外差干涉测量法,通过引入高精度的相位解调手段来检测P光与S光之间的相位差,以提高厚度测量的精度。微米级膜厚仪使用误区随着技术的进步和应用领域的拓展,白光干涉膜厚仪的性能和功能将不断提升和扩展。
针对现有技术的不足,提供一种基于白光干涉法的晶圆膜厚测量装置。该装置包括白光光源、显微镜、分束镜、干涉物镜、光纤传输单元、准直器、光谱仪、USB传输线、计算机。光谱仪主要包括六部分,分别是:光纤入口、准直镜、光栅、聚焦镜、区域检测器、带OFLV滤波器的探测器。测量具体步骤为:白光光源发出白光,经由光纤,通过光纤探头垂直入射至晶圆表面,样品薄膜上表面和下表面反射光相干涉形成的干涉谱,由反射光纤探头接收,再由光纤传送到光谱仪,光谱仪连续记录反射信号,通过USB线将测量数据传输到电脑。可以实现对晶圆膜厚的无损测量,时间快、设备小巧、操作简单、精度高,适合实验室检测。
光谱拟合法易于应用于测量,但由于使用了迭代算法,因此其优缺点在很大程度上取决于所选择的算法。随着遗传算法、模拟退火算法等全局优化算法的引入,被用于测量薄膜参数。该方法需要一个较好的薄膜光学模型(包括色散系数、吸收系数、多层膜系统),但实际测试过程中薄膜的色散和吸收的公式通常不准确,特别是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。因此,通常使用简化模型,全光谱拟合法在实际应用中不如极值法有效。此外,该方法的计算速度慢,不能满足快速计算的要求。总之,白光干涉膜厚仪是一种应用很广的测量薄膜厚度的仪器。
在激光惯性约束核聚变实验中,靶丸的物性参数和几何参数对靶丸制备工艺改进和仿真模拟核聚变实验过程至关重要。然而,如何对靶丸多个参数进行同步、高精度、无损的综合检测是激光惯性约束核聚变实验中的关键问题。虽然已有多种薄膜厚度及折射率的测量方法,但仍然无法满足激光核聚变技术对靶丸参数测量的高要求。此外,靶丸的参数测量存在以下问题:不能对靶丸进行破坏性切割测量,否则被破坏的靶丸无法用于后续工艺处理或打靶实验;需要同时测得靶丸的多个参数,因为不同参数的单独测量无法提供靶丸制备和核聚变反应过程中发生的结构变化的现象和规律,并且效率低下、没有统一的测量标准。由于靶丸属于自支撑球形薄膜结构,曲面应力大、难以展平,因此靶丸与基底不能完全贴合,可在微观区域内视作类薄膜结构。白光干涉膜厚测量技术可以应用于光学涂层中的薄膜反射率测量。微米级膜厚仪推荐
工作原理是基于膜层与底材反射率及相位差,通过测量反射光的干涉来计算膜层厚度。白光干涉膜厚仪的原理
基于表面等离子体共振传感的测量方案,利用共振曲线的三个特征参量半高宽、—共振角和反射率小值,通过反演计算得到待测金属薄膜的厚度。该测量方案可同时得到金属薄膜的介电常数和厚度,操作方法简单。我们利用Kretschmann型结构的表面等离子体共振实验系统,测得金膜在入射光波长分别为632.8nm和652.1nm时的共振曲线,由此得到金膜的厚度为55.2nm。由于该方案是一种强度测量方案,测量精度受环境影响较大,且测量结果存在多值性的问题,所以我们进一步对偏振外差干涉的改进方案进行了理论分析,根据P光和S光之间相位差的变化实现厚度测量。白光干涉膜厚仪的原理