对同一靶丸相同位置进行白光垂直扫描干涉,建立靶丸的垂直扫描干涉装置,通过控制光学轮廓仪的运动机构带动干涉物镜在垂直方向上的移动,从而测量到光线穿过靶丸后反射到参考镜与到达基底直接反射回参考镜的光线之间的光程差,显然,当一束平行光穿过靶丸后,偏离靶丸中心越远的光线,测量到的有效壁厚越大,其光程差也越大,但这并不表示靶丸壳层的厚度,存在误差,穿过靶丸中心的光线测得的光程差才对应靶丸的上、下壳层的厚度。白光干涉膜厚测量技术的研究需要对光学理论和光学仪器有较深入的了解。本地膜厚仪产品原理
利用包络线法计算薄膜的光学常数和厚度,但还存在很多不足,包络线法需要产生干涉波动,要求在测量波段内存在多个干涉极值点,且干涉极值点足够多,精度才高。理想的包络线是根据联合透射曲线的切点建立的,在没有正确方法建立包络线时,通常使用抛物线插值法建立,这样造成的误差较大。包络法对测量对象要求高,如果薄膜较薄或厚度不足情况下,会造成干涉条纹减少,干涉波峰个数较少,要利用干涉极值点建立包络线就越困难,且利用抛物线插值法拟合也很困难,从而降低该方法的准确度。其次,薄膜吸收的强弱也会影响该方法的准确度,对于吸收较强的薄膜,随干涉条纹减少,极大值与极小值包络线逐渐汇聚成一条曲线,该方法就不再适用。因此,包络法适用于膜层较厚且弱吸收的样品。国内膜厚仪按需定制白光干涉膜厚测量技术可以在不同环境下进行测量。
白光光谱法具有测量范围大、连续测量时波动范围小的优点,可以解决干涉级次模糊识别的问题。但在实际测量中,由于误差、仪器误差和拟合误差等因素的影响,干涉级次的测量精度仍然受到限制,会出现干扰级次的误判和干扰级次的跳变现象。这可能导致计算得出的干扰级次m值与实际谱峰干涉级次m'(整数)之间存在误差。因此,本文设计了以下校正流程图,基于干涉级次的连续特性得到了靶丸壳层光学厚度的准确值。同时,给出了白光干涉光谱测量曲线。
白光干涉测量技术,也称为光学低相干干涉测量技术,使用的是低相干的宽谱光源,如超辐射发光二极管、发光二极管等。与所有光学干涉原理一样,白光干涉也是通过观察干涉图案变化来分析干涉光程差变化,并通过各种解调方案实现对待测物理量的测量。采用宽谱光源的优点是,由于白光光源的相干长度很小(一般为几微米到几十微米之间),所有波长的零级干涉条纹重合于主极大值,即中心条纹,与零光程差的位置对应。因此,中心零级干涉条纹的存在为测量提供了一个可靠的位置参考,只需一个干涉仪即可进行待测物理量的测量,克服了传统干涉仪不能进行测量的缺点。同时,相对于其他测量技术,白光干涉测量方法还具有环境不敏感、抗干扰能力强、动态范围大、结构简单和成本低廉等优点。经过几十年的研究与发展,白光干涉技术在膜厚、压力、温度、应变、位移等领域已得到广泛应用。白光干涉膜厚测量技术可以应用于纳米制造中的薄膜厚度测量。
薄膜干涉原理根据薄膜干涉原理…,当波长为^的单色光以人射角f从折射率为n.的介质入射到折射率为n:、厚度为e的介质膜面(见图1)时,干涉明、暗纹条件为:
2e(n22一n12sin2i)1/2+δ’=kλ,k=1,2,3,4,5...(1)
2e(n22一n12sin2i)1/2+δ’=(2k+1)λ/2,k=0,1,2,3,4...(2)
E式中k为干涉条纹级次;δ’为半波损失.
普通物理教材中讨论薄膜干涉问题时,均近似地认为,δ’是指入射光波在光疏介质中前进,遇到光密介质i的界面时,在不超过临界角的条件下,不论人射角的大小如何,在反射过程中都将产生半个波长的损失(严格地说, 只在掠射和正射情况下反射光的振动方向与入射光的振动方向才几乎相反),故δ’是否存在决定于n1,n2,n3大小的比较。当膜厚e一定,而入射角j可变时,干涉条纹级次^随f而变,即同样的人射角‘对应同一级明纹(或暗纹),叫等倾干涉,如以不同的入射角入射到平板介质上.当入射角£一定,而膜厚。可变时,干涉条纹级次随。而变,即同样的膜厚e对应同一级明纹(或暗纹)。叫等厚干涉,如劈尖干涉和牛顿环. 白光干涉膜厚测量技术可以应用于光学传感器中的薄膜厚度测量。苏州膜厚仪信赖推荐
白光干涉膜厚测量技术可以通过对干涉图像的分析实现对薄膜的表面和内部结构测量。本地膜厚仪产品原理
针对微米级工业薄膜厚度测量,开发了一种基于宽光谱干涉的反射式法测量方法,并研制了适用于工业应用的小型薄膜厚度测量系统,考虑了成本、稳定性、体积等因素要求。该系统结合了薄膜干涉和光谱共聚焦原理,采用波长分辨下的薄膜反射干涉光谱模型,利用经典模态分解和非均匀傅里叶变换的思想,提出了一种基于相位功率谱分析的膜厚解算算法。该算法能够有效利用全光谱数据准确提取相位变化,抗干扰能力强,能够排除环境噪声等假频干扰。经过对PVC标准厚度片、PCB板芯片膜层及锗基SiO2膜层的测量实验验证,结果表明该测厚系统具有1~75微米厚度的测量量程和微米级的测量不确定度,而且无需对焦,可以在10ms内完成单次测量,满足工业级测量需要的高效便捷的应用要求。本地膜厚仪产品原理