您好,欢迎访问

商机详情 -

原装膜厚仪调试

来源: 发布时间:2023年12月21日

白光干涉时域解调方案需要借助机械扫描部件带动干涉仪的反射镜移动,补偿光程差,实现对信号的解调[44-45]。系统基本结构如图2-1所示。光纤白光干涉仪的两输出臂分别作为参考臂和测量臂,作用是将待测的物理量转换为干涉仪两臂的光程差变化。测量臂因待测物理量而增加了一个未知的光程,参考臂则通过移动反射镜来实现对测量臂引入的光程差的补偿。当干涉仪两臂光程差ΔL=0时,即两干涉光束为等光程的时候,出现干涉极大值,可以观察到中心零级干涉条纹,而这一现象与外界的干扰因素无关,因而可据此得到待测物理量的值。干扰输出信号强度的因素包括:入射光功率、光纤的传输损耗、各端面的反射等。外界环境的扰动会影响输出信号的强度,但是对零级干涉条纹的位置不会产生影响。白光干涉膜厚测量技术可以实现对薄膜的三维成像和分析。原装膜厚仪调试

原装膜厚仪调试,膜厚仪

根据以上分析可知,白光干涉时域解调方案的优点是:①能够实现测量;②抗干扰能力强,系统的分辨率与光源输出功率的波动,光源的波长漂移以及外界环境对光纤的扰动等因素无关;③测量精度与零级干涉条纹的确定精度以及反射镜的精度有关;④结构简单,成本较低。但是,时域解调方法需要借助扫描部件移动干涉仪一端的反射镜来进行相位补偿,所以扫描装置的分辨率将影响系统的精度。采用这种解调方案的测量分辨率一般是几个微米,达到亚微米的分辨率,主要受机械扫描部件的分辨率和稳定性限制。文献[46]所报道的位移扫描的分辨率可以达到0.54μm。当所测光程差较小时,F-P腔前后表面干涉峰值相距很近,难以区分,此时时域解调方案的应用受到限制。湖南新型膜厚仪白光干涉膜厚测量技术可以通过对干涉图像的分析实现对不同材料的薄膜的联合测量和分析。

原装膜厚仪调试,膜厚仪

    为了分析白光反射光谱的测量范围,开展了不同壁厚的靶丸壳层白光反射光谱测量实验。图是不同壳层厚度靶丸的白光反射光谱测量曲线,如图所示,对于壳层厚度30μm的靶丸,其白光反射光谱各谱峰非常密集、干涉级次数值大;此外,由于靶丸壳层的吸收,壁厚较大的靶丸信号强度相对较弱。随着靶丸壳层厚度的进一步增加,其白光反射光谱各谱峰将更加密集,难以实现对各干涉谱峰波长的测量。为实现较大厚度靶丸壳层厚度的白光反射光谱测量,需采用红外的宽谱光源和光谱探测器。对于壳层厚度为μm的靶丸,测量的波峰相对较少,容易实现靶丸壳层白光反射光谱谱峰波长的准确测量;随着靶丸壳层厚度的进一步减小,两干涉信号之间的光程差差异非常小,以至于他们的光谱信号中只有一个干涉波峰,基于峰值探测的白光反射光谱方法难以实现其厚度的测量;为实现较小厚度靶丸壳层厚度的白光反射光谱测量,可采用紫外的宽谱光源和光谱探测器提升其探测厚度下限。

在纳米量级薄膜的各项相关参数中,薄膜材料的厚度是薄膜设计和制备过程中的重要参数,是决定薄膜性质和性能的基本参量之一,它对于薄膜的光学、力学和电磁性能等都有重要的影响[3]。但是由于纳米量级薄膜的极小尺寸及其突出的表面效应,使得对其厚度的准确测量变得困难。经过众多科研技术人员的探索和研究,新的薄膜厚度测量理论和测量技术不断涌现,测量方法实现了从手动到自动,有损到无损测量。由于待测薄膜材料的性质不同,其适用的厚度测量方案也不尽相同。对于厚度在纳米量级的薄膜,利用光学原理的测量技术应用。相比于其他方法,光学测量方法因为具有精度高,速度快,无损测量等优势而成为主要的检测手段。其中具有代表性的测量方法有椭圆偏振法,干涉法,光谱法,棱镜耦合法等。白光干涉膜厚测量技术可以应用于光学元件制造中的薄膜厚度控制。

原装膜厚仪调试,膜厚仪

论文所研究的锗膜厚度约300nm,导致其白光干涉输出光谱只有一个干涉峰,此时常规基于相邻干涉峰间距解调的方案(如峰峰值法等)将不再适用。为此,我们提出了一种基于单峰值波长移动的白光干涉测量方案,并设计搭建了膜厚测量系统。温度测量实验结果表明,峰值波长与温度变化之间具有良好的线性关系。利用该测量方案,我们测得实验用锗膜的厚度为338.8nm,实验误差主要来自于温度控制误差和光源波长漂移。论文通过对纳米级薄膜厚度的测量方案研究,实现了对锗膜和金膜的厚度测量。论文主要的创新点是提出了白光干涉单峰值波长移动的解调方案,并将其应用于极短光程差的测量。白光干涉膜厚测量技术的研究需要对光学理论和光学仪器有较深入的了解。许昌膜厚仪成本价

白光干涉膜厚测量技术的研究主要集中在实验方法的优化和算法的改进上。原装膜厚仪调试

确定靶丸折射率及厚度的算法,由于干涉光谱信号与膜的光参量直接相关,这里主要考虑光谱分析的方法根据测量膜的反射或透射光谱进行分析计算,可获得膜的厚度、折射率等参数。根据光谱信号分析计算膜折射率及厚度的方法主要有极值法和包络法、全光谱拟合法。极值法测量膜厚度主要是根据薄膜反射或透射光谱曲线上的波峰的位置来计算,对于弱色散介质,折射率为恒定值,根据两个或两个以上的极大值点的位置,求得膜的光学厚度,若已知膜折射率即可求解膜的厚度;对于强色散介质,首先利用极值点求出膜厚度的初始值。薄膜厚度是一恒定不变值,可根据极大值点位置的光学厚度关系式获得入射波长和折射率的对应关系,再依据薄膜材质的色散特性,引入合适的色散模型,常用的色散模型有cauchy模型、Selimeier模型、Lorenz模型等,利用折射率与入射波长的关系式,通过二乘法拟合得到色散模型的系数,即可解得任意入射波长下的折射率。原装膜厚仪调试

标签: 位移传感器