光学测厚方法集光学、机械、电子、计算机图像处理技术为一体,以其光波长为测量基准,从原理上保证了纳米级的测量精度。同时,光学测厚作为非接触式的测量方法,被广泛应用于精密元件表面形貌及厚度的无损测量。其中,薄膜厚度光学测量方法按光吸收、透反射、偏振和干涉等光学原理可分为分光光度法、椭圆偏振法、干涉法等多种测量方法。不同的测量方法,其适用范围各有侧重,褒贬不一。因此结合多种测量方法的多通道式复合测量法也有研究,如椭圆偏振法和光度法结合的光谱椭偏法,彩色共焦光谱干涉和白光显微干涉的结合法等。白光干涉膜厚测量技术可以通过对干涉曲线的分析实现对薄膜的光学参数测量。苏州膜厚仪成本价
为限度提高靶丸内爆压缩效率,期望靶丸所有几何参数、物性参数均为理想球对称状态。因此,需要对靶丸壳层厚度分布进行精密的检测。靶丸壳层厚度常用的测量手法有X射线显微辐照法、激光差动共焦法、白光干涉法等。下面分别介绍了各个方法的特点与不足,以及各种测量方法的应用领域。白光干涉法[30]是以白光作为光源,宽光谱的白光准直后经分光棱镜分成两束光,一束光入射到参考镜。一束光入射到待测样品。由计算机控制压电陶瓷(PZT)沿Z轴方向进行扫描,当两路之间的光程差为零时,在分光棱镜汇聚后再次被分成两束,一束光通过光纤传输,并由光谱仪收集,另一束则被传递到CCD相机,用于样品观测。利用光谱分析算法对干涉信号图进行分析得到薄膜的厚度。该方法能应用靶丸壳层壁厚的测量,但是该测量方法需要已知靶丸壳层材料的折射率,同时,该方法也难以实现靶丸壳层厚度分布的测量。内蒙古膜厚仪常见问题白光干涉膜厚测量技术的研究需要对光学理论和光学仪器有较深入的了解。
光谱法是以光的干涉效应为基础的一种薄膜厚度测量方法,分为反射法和透射法两类[12]。入射光在薄膜-基底-薄膜界面上的反射和透射会引起多光束干涉效应,不同特性的薄膜材料的反射率和透过率曲线是不同的,并且在全光谱范围内与厚度之间是一一对应关系。因此,根据这一光谱特性可以得到薄膜的厚度以及光学参数。光谱法的优点是可以同时测量多个参数且可以有效的排除解的多值性,测量范围广,是一种无损测量技术;缺点是对样品薄膜表面条件的依赖性强,测量稳定性较差,因而测量精度不高;对于不同材料的薄膜需要使用不同波段的光源等。目前,这种方法主要应用于有机薄膜的厚度测量。
光谱拟合法易于测量具有应用领域,由于使用了迭代算法,因此该方法的优缺点在很大程度上取决于所选择的算法。随着各种全局优化算法的引入,遗传算法和模拟退火算法等新算法被用于薄膜参数的测量。其缺点是不够实用,该方法需要一个较好的薄膜的光学模型(包括色散系数、吸收系数、多层膜系统),但是在实际测试过程中,薄膜的色散和吸收的公式通常不准确,尤其是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。在实际应用中只能使用简化模型,因此,通常全光谱拟合法不如极值法有效。另外该方法的计算速度慢也不能满足快速计算的要求。白光干涉膜厚测量技术可以实现对薄膜表面形貌的测量。
自上世纪60年代起,利用X及β射线、近红外光源开发的在线薄膜测厚系统广泛应用于西方先进国家的工业生产线中。20世纪70年代后,为满足日益增长的质检需求,电涡流、电磁电容、超声波、晶体振荡等多种膜厚测量技术相继问世。90年代中期,随着离子辅助、离子束溅射、磁控溅射、凝胶溶胶等新型薄膜制备技术取得巨大突破,以椭圆偏振法和光度法为展示的光学检测技术以高精度、低成本、轻便环保、高速稳固为研发方向不断迭代更新,迅速占领日用电器及工业生产市场,并发展出依据用户需求个性化定制产品的能力。其中,对于市场份额占比较大的微米级薄膜,除要求测量系统不仅具有百纳米级的测量准确度及分辨力以外,还要求测量系统在存在不规则环境干扰的工业现场下,具备较高的稳定性和抗干扰能力。 白光干涉膜厚测量技术的精度可以达到纳米级别。苏州膜厚仪成本价
白光干涉膜厚测量技术可以对薄膜的厚度和形貌进行联合测量和分析。苏州膜厚仪成本价
白光干涉频域解调顾名思义是在频域分析解调信号,测量装置与时域解调装置几乎相同,只需把光强测量装置换为光谱仪或者是CCD,接收到的信号是光强随着光波长的分布。由于时域解调中接收到的信号是一定范围内所有波长的光强叠加,因此将频谱信号中各个波长的光强叠加,即可得到与它对应的时域接收信号。由此可见,频域的白光干涉条纹不仅包含了时域白光干涉条纹的所有信息,还包含了时域干涉条纹中没有的波长信息。在频域干涉中,当两束相干光的光程差远大于光源的相干长度时,仍可以在光谱仪上观察到频域干涉条纹。这是由于光谱仪内部的光栅具有分光作用,能够将宽谱光变成窄带光谱,从而增加了光谱的相干长度。这一解调技术的优点就是在整个测量系统中没有使用机械扫描部件,从而在测量的稳定性和可靠性上得到很大的提高。常见的频域解调方法有峰峰值检测法、傅里叶解调法以及傅里叶变换白光干涉解调法等。苏州膜厚仪成本价