列车防撞系统构成:列车障碍物探测与防撞系统,采用主动、非接触式探测技术。其主要部件包括探测主机、二次雷达、激光雷达、摄像机、微波雷达、高速RFID读卡器;通过对所有视觉数据、雷达测量数据的融合,能够实现对运行列车前方轨道区障碍物的实时探测;通过二次雷达在ATP切除模式下对前方列车的实时距离测量,来进行列车辅助防撞预警,为列车运行提供安全保障。通过与各类集成商的合作,采用我司技术的在线系统已达2200+台(套),具有较高的市场占有率。防碰撞雷达可以帮助驾驶员及时发现潜在的危险情况并采取避免措施。安徽雷达哪里有
轨道交通防撞雷达技术的发展也为轨道交通系统的扩展和更新提供了支持。随着城市的不断发展,轨道交通网络不断扩张,新的线路和车辆相继投入使用。在这种情况下,轨道交通防撞雷达技术能够帮助运营方更好地管理和控制整个系统。通过实时监测和预警功能,系统可以为新线路和车辆的投入使用提供保障,确保系统运行的顺畅和安全。此外,轨道交通防撞雷达技术的应用还可以提升轨道交通系统的可持续性。通过精确的障碍物感知和运行优化,系统能够帮助降低能量消耗和碳排放,提高能源利用效率。同时,系统的智能调度和优化功能还可以减少拥堵和延误,缩短行程时间,促进公共交通的使用,减少城市交通压力,改善城市空气质量。超宽带雷达哪家强列车防撞 轨道障碍物探测方案。
列车防撞雷达DG5000T2C----DG5000T2C二次雷达是一种底层有限开放、数据接口符合国际ISO24730标准的无线实时测量产品,能够帮助系统集成商、终端用户实现不同的测距、定位业务需求,如列车防撞预警、飞行器目标接近预判断、矿山小车防碰撞、长隧道状1D线性定位、施工过程监测、基于存在检测的ZONE功能等。即使客户的应用场景有较大差异,系统仍然能够通过灵活的结构变化,满足现场的实际功能需求,实际测量距离可达1公里以上,能够较大限度帮助客户节省投入,获取比较高性价比。欢迎随时联系我们获取更多详细资料!
列车防撞雷达特征:1.双边测量能够补偿设备间差异,包括因为温度、时钟差异导致的测量误差;2.测量快速,单次测量<2ms;3.低频信号2.4G,保持传播连续性;4.单边测量、双边测量可选择。测量距离:由于二次雷达用于解决微波雷达、激光雷达、长短焦摄像头等不可实现的远距离预警,因此二次雷达所能够支持的设备间测量距离,将是重要的考察指标。Chirp雷达将取决于设备信号的频率特性、通讯裕量等参数。在这里,我们计算出法定功率下,采用比较大辐射功率EIRP>1500m。轨道交通如何避免碰撞?
轨道交通防撞雷达技术的应用还可以为轨道交通系统提供更多的智能化功能和服务。例如,基于轨道交通防撞雷达的系统可以实现自动驾驶功能,减轻驾驶员的工作负担,提高运行的稳定性和准确性。这种自动驾驶系统能够根据实时的障碍物感知和数据分析,自动控制车辆的速度、加速度和制动过程,确保列车在复杂的运行环境中平稳运行。此外,轨道交通防撞雷达技术还能够与其他智能交通系统和城市管理系统进行集成,实现全方面的交通管理和调度。通过与智能信号灯、智能交通管理系统和城市运行平台的连接,轨道交通防撞雷达技术可以提供更准确的交通状态信息和预测,帮助实现交通信号的优化调整和流量的平衡分配。这能够进一步提高城市交通的效率和安全性,缓解交通压力,改善出行体验。值得一提的是,轨道交通防撞雷达技术在国际上也得到了广泛的应用和认可。许多国家和地区已经在其轨道交通系统中采用了这一技术,并取得了良好的效果。它为城市的交通建设和发展提供了重要支持,也为其他国家和地区的轨道交通建设提供了宝贵的经验和借鉴。支持不同系统集成商的 产品设计改进需求;支持定位基站扩 展与应用定制;支持定制多种防护标 准设备。安徽雷达哪里有
列车防避撞预警系统/障碍物检测主流解决方案有哪些?安徽雷达哪里有
列车防撞雷达典型特性如下,高精度:基于Chirp小孔径雷达宽带脉冲测量体制,通过基于时间机制的双向对称TOF测量技术,实现稳定的1~3m实用测量精度;多场景:支持1D防碰撞、ZONE识别应用,可升级2D系统级定位;*快测量:TOF单次测量时间小于1.8ms,其中无线电带宽占用时间*0.7ms;*远测量:支持27dBm可调节的信号覆盖,在6~8dBi全向天线环境中达到600~1500m测量范围,定向天线时能达到2000m以上的1D动态测量范围,且完全符合国家无线电标准。精细同步:无需有线连接,即可自动实现优于0.6ns时间精度的设备同步网络,实现高效的设备间协调;高刷新率:较大的刷新率调节范围,支持点对点比较高400Hz的测量速度;在多设备系统中,0.1~10HZ可调。高密度:支持10hz@12个雷达以上的局域高密度测量,整个系统容量不加限制;强适应性:具有较强的抗多径能力,即使7/8信号**扰,也可正确测量。安徽雷达哪里有