普遍使用的MEMS陀螺(微机械)可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。并且MEMS陀螺相比传统的陀螺有明显的优势:1.体积小、重量轻。适合于对安装空间和重量要求苛刻的场合,例如弹载测量等。2.低成本。3.高可靠性。内部无转动部件,全固态装置,抗大过载冲击,工作寿命长。4.低功耗。5.大量程。适于高转速大g值的场合。6.易于数字化、智能化。可数字输出,温度补偿,零位校正等。从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动。通过陀螺仪和GPS的组合使用,可以实现更精确的位置和姿态信息,普遍用于航空、汽车导航系统等领域。河北惯导生产厂家
垂直陀螺仪(Vertical Gyroscope)存在各种类型航空仪表的惯性导航系统和基本输进系统中,用来丈量航天器的侧倾角度(横滚)和俯仰角(姿态)。陀螺仪作为一种惯性测量器件,是惯性导航、惯性制导和惯性测量系统的主要部件,普遍应用于特种和民用领域。陀螺仪的原理很简单,其基本原理和自行车能直立行走的原理一样,主要部件是一个能快速旋转的金属轮,就是靠这个快速旋转的轮子产生恒定的方向性,来指示或驱动或该变飞行器的飞行姿态,陀螺仪是靠陀螺轮高速旋转而工作的。辽宁陀螺仪市价陀螺仪可以抵抗外界干扰和振动,提供稳定可靠的测量结果。
1950s,美国查尔斯·史塔克·德雷伯实验室,采用液浮支撑技术,研制出液浮陀螺仪,使陀螺仪的精度达到了惯性级要求。1960s,美国罗伯特·克雷格,研制出动力调谐陀螺仪,在战术导弹和特种飞机等平台成功应用1963,美国研制出激光陀螺仪,随后将其应用到飞机与战术导弹1964,美国研制出静电陀螺仪,并于1979年将其应用于“三叉戟”弹道导弹核潜艇,使得潜艇导航能力实现质的飞跃1990s,以微机电陀螺仪(MEMS)、半球谐振陀螺仪(RG)为表示的振动陀螺仪,以及以核磁共振陀螺仪(NMRG)、原子干涉陀螺仪(AIG)为表示的原子陀螺仪快速发展。
陀螺仪分为单自由度陀螺仪与双自由度陀螺仪,双自由度陀螺仪为陀螺转子增加了两个自由度,即为双自由度陀螺仪。单自由度陀螺仪为陀螺转子增加了一个自由度。两种陀螺仪均可敏感角速度,只不过陀螺仪进动性表现不同。下面以单自由度陀螺仪解释陀螺仪敏感角速度原理。惯性器件:陀螺仪敏感角速度原理。单自由度陀螺仪内部构造。z轴为陀螺转子主轴(虚线为陀螺转子);y轴为缺少自由度的轴,也为输入轴;x轴为输出轴。由上述分析可知,x,z方向的角速度并不能使转子随着基座运动,即相对惯性空间不变;当且只当y轴方向的角速度使的转子在x轴方向进动,即相对于惯性空间运动。因此测量x轴的角速度即可测量载体在y轴的角速度。总之,单自由度陀螺仪可以敏感某一轴相对惯性空间的角速度。陀螺仪的工作原理是基于角动量守恒定律,即物体在没有外力作用下,角动量保持不变。
陀螺稳定器,稳定船体的陀螺装置。20世纪初使用的施利克被动式稳定器实质上是一个装在船上的大型二自由度重力陀螺仪,其转子轴铅直放置,框架轴平行于船的横轴。当船体侧摇时,陀螺力矩迫使框架携带转子一起相对于船体旋进。这种摇摆式旋进引起另一个陀螺力矩,对船体产生稳定作用。斯佩里主动式稳定器是在上述装置的基础上增加一个小型操纵陀螺仪,其转子沿船横轴放置。一旦船体侧倾,小陀螺沿其铅直轴旋进,从而使主陀螺仪框架轴上的控制马达及时开动,在该轴上施加与原陀螺力矩方向相同的主动力矩,借以加强框架的旋进和由此旋进产生的对船体的稳定作用。陀螺仪特点包括响应速度快、精度高、不受外部环境影响等,能够提供可靠的姿态控制和导航信息。河北惯导生产厂家
陀螺仪的工作原理基于角动量守恒定律,通过测量旋转部件的惯性变化来计算物体的角度和方向。河北惯导生产厂家
各种陀螺仪的应用:陀螺仪发明后首先应用在飞机上,后来又被用在导弹上,采用陀螺仪确定方向和角度,就可计算出飞行路线,从而进行姿态控制。手机陀螺仪就是把机械陀螺仪缩小了装在手机主板上的,其实我也是这么想的,但永远不要低估科技的力量,现在都发展到有激光陀螺仪,光纤陀螺仪,以及微机电陀螺仪,虽然还叫陀螺仪,但其原理跟机械陀螺仪完全不一样,激光陀螺仪的原理是利用光程差来测量旋转角速度,在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。主要用于航空,航天,国家防护等档次高领域。河北惯导生产厂家