您好,欢迎访问

商机详情 -

河南AI智能烟雾识别

来源: 发布时间:2024年09月20日

YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被***用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。标注需要大量人工劳动一直是采用计算机视觉的主要障碍之一。河南AI智能烟雾识别

AI智能

慧视光电开发的Viztra-HE030图像处理板采用了工业级芯片RK3588,内部植入公司自主研发的智能图像算法,架构更先进,核心数8核(4大4小),算力6.0TOPS,支持丰富的输出接口,同时支持H264、H265两类视频编码。可实时对目标进行识别或者人为的的锁定,同时可以根据输出目标的靶量信息,对目标进行实时跟踪。这是达成目的的硬件条件。在算法领域,则需要一些特殊的算法。无人机执行任务时飞在高空,地面的物体就会显得较小,小目标通常指图像中像素面积小于32*32的物体,一般的AI算法难以实现精细锁定跟踪。甘肃智慧养老AI智能明火识别利用SpeedDP能够实现降本增效。

河南AI智能烟雾识别,AI智能

中国的无人机在世界上可谓是独领,随着技术的发展,无人机的应用范围也越来越广。在无人机的一些应用领域中,如应急救援、安防等,需要利用无人机进行远程信息侦查、航拍以及图像识别处理等功能,这就需要一款轻巧、成本低、像素好、品质高的吊舱。市面上很多吊舱要么就是体积大,要么就是重量大,或者是不支持角度、角速度的反馈控制,很难达到上述应用场景的工作需求。为了解决这些难点,成都慧视针对性的开发了多款微型多光吊舱来适配不同行业不同领域的需求。

图像识别方法可以分为两大类,模型方法和搜索方法。模型方法是在业界研究和使用比较多的方法。模型的方法是试图通过一些已知“标签”的图像,通过机器学习的各种方法来学习一个描述这些标签的“模型”,从而,对于一个新的未知图像,经过这个模型判断出其应该具有的标签。基于搜索的方法是在大数据时代才出现的方法,其基础是将已知标签的图像数据建成一个可以进行高效率检索的数据库,称为图像索引。通常需要大量的图像来建索引,但图像的标签可以有少量的噪声。那么,对一副待测图像,我们到这个数据库中去找与其相同或者相似的若干图像,然后综合这些图像的标签来预测待测图像的标签。不断提高目标检测算法的准确性和效率能够帮助提升标注精度。

河南AI智能烟雾识别,AI智能

虽然现在各种公共交通已十分便捷,但是仍然存在许多无证、无资质的车辆,这些车辆无视交通法规,所以超速超载,俨然成为公路安全一大隐患。例如在车站出入口,经常会有很多人进行拉客,虽然说是坐满就走,但是为了利益比较大化,超员那是常有的事。再比如暑期来临,各种培训班、托儿所成批出现,也由此滋生了许多“黑校车”,为了尽可能的节约成本,常常让所有学生挤在一辆车内,严重危及孩子安全。要想避免事故的发生,则需要警民合作,路人积极提供线索,而管理部分则迅速行动,对车辆进行追踪拦截。人工智能和机器学习算法可用于分析来自各种来源的大量数据。山西智慧安防AI智能人脸识别

SpeedDP能够实现快速标注。河南AI智能烟雾识别

无人机吊舱除了在安防巡检、应急救援等领域有应用前景外,随着2024上半年低空经济的大力发展,吊舱迎来了又一大应用市场。利用无人机载物运输,具有便利高效的特点,它能够弥补传统运输的不足,提高交通运输的效率和灵活性,能够有效连接城区与郊区、城与城之前的资源互送,做到资源的协调调配。低空经济以无人机为载体,载动物品进行低空运输,这个过程中就可以用到无人机吊舱,慧视无人机吊舱内置摄像头+AI图像处理板,能够清晰获得无人机前方画面,在运输时能够实现避障等操作。慧视光电开发的VIZ-GT07D三轴双光惯性稳定吊舱,集成了640×512高分辨率红外相机、1300万像素的全高清可见光相机和陀螺稳定平台。超小的体积和重量,携行方便,无论是白天还是夜间,都能够获取清晰的视频画面,为无人机运输提供便利。河南AI智能烟雾识别