人脸识别始于20世纪60年代,随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,以美国、日本和德国的技术为主。随着人工智能的发展以及处理的快速迭代更新,人脸识别技术也获得了很大的突破,同时人脸识别也是生物特征的应用。其技术的实现,展现了弱人工智能向强人工智能的转化。总的来说,人脸识别的原理是收集用户的面部数据存入数据库,然后进行机器学习,通过采集需要解锁对象的面部数据,放进数据库进行比对,然后完成解锁。AI标注是未来的趋势。云南深度学习AI智能视觉识别
图像识别模块,是现代科技的神奇之眼。现在已经在很多领域有着应用。它以非凡的洞察力,解析世间万象,从医疗的精密诊断到安防的严密监控,再到自动驾驶的未来探索,无一不展现着其强大的应用力量。在医疗领域,它是医生的得力助手,精确识别病变,让健康无忧。在安防领域,它是守护者,用智能的眼光,保护人们的安全。而在自动驾驶的舞台上,它是探索者,为车辆指引道路,开启未来出行的新篇章。图像识别,不仅是技术的飞跃,更是人类生活的美好伙伴。图像识别AI智能服务平台人工智能Artificial Intelligence、机器学习Machine Learning和深度学习Deep Learning通常可以互换使用。
机器人是AI落地应用的一个很重要载体,AI赋能的机器人能够在安防巡检、自动化作业、应急救援等领域发挥重要作用。在电力巡检当中,传统的模式需要人工一步一步走出来,面对假设在各种环境中的输电线,这种模式弊端重重,费时费力。而常年经受风吹雨晒的输电线,在使用久了之后,难免会出现电力设备损坏缺失等问题,AI赋能下的机器人的出现,为这项行业的工作效率的提升提供了新思路。巡检机器人内置可见光和红外摄像头,能够实现昼夜巡检,然后再内置高性能的AI图像处理板,就能够运用AI识别、多机协同、数字孪生、巡检监控等技术,实现自动巡视、缺陷和表计自动识别和告警、巡视报表自动生成和发送等功能,实现场站式巡检场景的全息感知和全域决策辅助。
从2016年12月11日起,我国就正式施行林河长制。其中林长制主要职责是林业生态保护修复、森林防火、林业有害生物防治、森林资源管护以及野生动植物保护工作。而河长制是保护水资源,打造安全用水环境。这两项工作对我国的自然生态的稳定具有关键作用。在中西部许多地区,由于环境下复杂,对于林、河的巡护是一项困难的工作,不仅要花费大量的时间精力,还不能做到大面积的覆盖。随着无人机的落地应用,这种困难得到了有效缓解。无人机“加持”下的林河长巡查,形成了“人防+技防”的地空巡检新模式,覆盖更广、发现更及时。无人机凭借其灵活、轻巧的特点可以轻松飞越一些人无法到达的地点,还能够实时传输高清图像数据,节约时间成本,快速高效地获取资料,让管理人员对森林植被、河湖状况一目了然。人工智能和机器学习的数字施工工具,可以提供准确和精确的测量。
近年来,国内外从事图像视频识别的公司明显增加,谷歌、Facebook、微软、旷视科技、图普科技、格灵深瞳等国内外企业重点集中在人脸识别、智能安防和智能驾驶等领域进行技术研发与产品设计。对于整个人工智能行业来说,目前,包括安防、金融、工业、医疗、教育等领域对AI技术的需求极大,高精度AI数据交付在助力AI产业场景化落地的同时,不仅带来了更好的用户体验,也进一步加快了智能化时代的到来,带动算力、算法等领域的振兴。在各方的努力下,中国AI市场将从局部的发展向整体的上升发展,行业前景一片向好。采用SpeedDP一劳永逸。重庆边海防AI智能
SpeedDP整体安全性很高。云南深度学习AI智能视觉识别
YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被***用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。云南深度学习AI智能视觉识别