您好,欢迎访问

商机详情 -

行业用AI智能图像处理

来源: 发布时间:2024年05月21日

部署机器学习模型,也称为模型部署,简单来说就是将机器学习模型集成到现有的生产环境中,在该环境中,模型可以接受输入并返回输出。部署模型的目的是让其他人(无论是用户、管理人员还是其他系统)可以使用训练有素的机器学习模型进行预测。模型部署与机器学习系统架构密切相关,机器学习系统架构是指系统内软件组件的排列和交互,以实现预定义的目标。成都慧视推出的AI自动图像标注软件SpeedDP也是这样,通过正确的模型部署后方能进行正确的AI模型训练,让AI更加智能。SpeedDP能够实现快速标注。行业用AI智能图像处理

AI智能

随着大模型时代到来,模型参数呈指数级增长,达到万亿级别。大模型逐渐从支持单一模态和任务发展为支持多种模态下的多种任务。在这种趋势下,大模型训练所需算力巨大,远超单个芯片的处理速度,而多卡分布式训练通信损耗巨大。如何提高硬件资源利用率,成为影响国产大模型技术发展和实用性的重要前提。成都慧视推出的AI训练平台SpeedDP就可以通过大量的数据注入,让AI进行不断的模型训练,不断地深度学习能够让AI更加聪明,为目标检测、目标识别提供帮助。深度学习AI智能提供商SpeedDP图像标注操作流程很简便。

行业用AI智能图像处理,AI智能

SpeedDP有4+3的功能组合,为不同需求的客户提供定制化服务。项目配置:含任务属性(当前支持目标检测)、算法模型(当前支持YOLO-X)、项目参数等;模型训练:支持模型参数配置、训练过程可视化等;模型评估:支持评价体系(如:AP)、结果统计等;数据测试:支持数据(图像、视频)的实时加载测试,输出OSD叠加后的测试结果;自动标注:基于导入数据集快速生成标注结果,支持标注工具(LabelImg)读取和调整;(可选)模型部署:支持PC端、嵌入式端(瑞芯微平台,RKNN/RKNN2)两种部署方式;(可选)Web服务:支持快速搭建Web服务,用于团队内部或对外进行快捷访问和申请服务;(可选)

图像识别方法可以分为两大类,模型方法和搜索方法。模型方法是在业界研究和使用比较多的方法。模型的方法是试图通过一些已知“标签”的图像,通过机器学习的各种方法来学习一个描述这些标签的“模型”,从而,对于一个新的未知图像,经过这个模型判断出其应该具有的标签。基于搜索的方法是在大数据时代才出现的方法,其基础是将已知标签的图像数据建成一个可以进行高效率检索的数据库,称为图像索引。通常需要大量的图像来建索引,但图像的标签可以有少量的噪声。那么,对一副待测图像,我们到这个数据库中去找与其相同或者相似的若干图像,然后综合这些图像的标签来预测待测图像的标签。人工标注仍然是必要的。

行业用AI智能图像处理,AI智能

图像识别以图像处理为基础,是指以图像为对象所开展的各种处理性工作,包括编码、压缩、复原及分割等。图像处理过程中,以图像输入后,一般情况下也会通过图像形态进行输出。在图像识别过程中,将处理后的图像输入,一般情况下输出类别与图像结构分析。也就是说,图像识别是一个自原始图像到物体类型的过程,原始图像经过图像处理后,抽取特征并加以分类对比,以图像样本库资源作为对比分析的参考依据,然后确定物体类型。从本质上来讲,可以将图像识别看作是对图像分类与描述进行研究的过程。在图像识别过程中,在对图像中物体进行检测分离之后,将物体特征提取出来,以形状、纹理特征等作为提取对象,一般将图像处理融入到图像特征提取环节中。待对比分析明确物体类型后,从结构层面上对图像进行分析。SpeedDP整体安全性很高。贵州视频识别AI智能减员增效

现如今机器人技术已经成为科技领域前沿的技术。行业用AI智能图像处理

例如在工厂库房,它能够限度地提高供应链的效率,提高整体生产率。通过AI来分析和监控库存,并根据收集客户的购物习惯,从而提升服务体验,增加市场竞争力。在自动驾驶领域,AI赋能的摄像头能够自动化识别监控周边环境,判断路面是否存在障碍物,从而在自动驾驶时精确避障。在人员密集的开放性场所,如车站、商城等,AI算法赋能的摄像头能够监控每一个人的行为举止,当出现危险性行为时,AI监控就能立即识别并报警,减少危险行为的进一步伤害。在制造业领域,搭载AI算法的摄像头能够比人眼更加精确的判断产品是否出现瑕疵,从而提升良品率。行业用AI智能图像处理