图像识别技术的高价值应用就发生在你我身边,例如视频监控、自动驾驶和智能医疗等,而这些图像识别进展的背后推动力是深度学习。深度学习的成功主要得益于三个方面:大规模数据集的产生、强有力的模型的发展以及可用的大量计算资源。对于各种各样的图像识别任务,精心设计的深度神经网络已经远远超越了以前那些基于人工设计的图像特征的方法。尽管到目前为止深度学习在图像识别方面已经取得了巨大成功,但在它进一步广泛应用之前,仍然有很多挑战需要我们去面对。现如今机器人技术已经成为科技领域前沿的技术。成都深度学习AI智能视觉
随着人工智能的不断发展,人工智能+给各行各业带来了翻天覆地的变化。为了让人工智能反哺经济、生活、生产等诸多领域,不少民企、事业单位开始大量采用相关人工智能服务,来帮助企业节省项目开发时间,这样能够提升效率优化项目成本。但是AI类服务带来优势的同时也带来了诸多问题,一方面人工智能的开发需要投入大量人力物力,包括长时间的深度学习模型训练、人才的培养、大量数据模型的采集标注,并且大量的投入不一定意味着能取得很好地结果。西藏人工智能AI智能算法分析厂家慧视光电基于AI图像处理的监控监管方案能够实现安全生产。
我们教一个小孩识物的时候,比如“苹果”,首先要让他反复的看到“苹果”,他便能认识“苹果”;他可能会认错,把“梨”认成“苹果”,这个时候应该帮他指出来。小孩看到的“苹果”越多,辨识的能力就越强。基于深度神经网络的人工智能,让机器具备理解的能力,基本过程就像教一个小孩认苹果一样。首先要有大量的数据,比如“苹果”的图片;同时,要增加大量机器会认错的“负样本”,比如“梨”的图片;然后经过一个深度神经网络,反复学习,然后获得一个有效的识别模型。对于快消商品的识别,我们不仅要认出一个瓶子包装,还要认出是一瓶酸奶还是啤酒;不仅要认出酸奶,还要认出是哪个品牌的酸奶,甚至是哪个口味和规格。要让机器能够准确识别成千上万的快消商品SKU,是一项极其庞大而复杂的AI工程。
即使是十分复杂的照片也可以使用机器学习进行分割,这也可以寻找异常情况。利用图像分割,计算机可以把一张图片分成其逻辑组成部分。例如,其可以根据车窗、挡风玻璃、车轮和转向等特征对汽车进行分类。由于图像分割,其可以区分几个逻辑部分。慧视光电自研的AI智能算法,具备不断训练学习的超高能力,搭载在开发的图像处理板上,就能实现上述功能。并且慧视光电能够为使用者提供AI训练的平台工具,为使用者节约大量的人力物力成本AI的三大基石:数据、算力和算法。
图像视频识别技术深入生活场景的背后,数据发挥着愈加重要的作用。我们都知道人工智能是通过大批量基于特定标注规则后学习的方法论。"数据标注"通过人工智能训练师将像素、语音信号、文本内容等转换为机器能理解,能看懂的数据内容,这样机器才能习得识别处理。因此,数据标注工作自然也就成为将原始数据变成算法可用AI数据的关键步骤,是关乎整个AI产业的基础,更是机器感知现实世界的源点。可以说得数据者,才得人工智能。高质量的AI数据对于图像视频识别技术的落地应用的价值毋庸置疑,高质量的AI数据将很大限度地提升图像识别的效率。可以说,数据之于AI产业的意义,就在于可以很大程度上提升AI在行业落地的效率与稳定,进而推动新基建的落地,可见其意义之深远。SpeedDP是一个辅助型图像标注工具。四川边海防AI智能算法
SpeedDP是深度学习领域的产品。成都深度学习AI智能视觉
基于以上强烈的市场需求,成都慧视光电技术有限公司推出了SpeedDP深度学习算法开发平台,该平台是一款专门针对AI零基础用户的低门槛AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。SpeedDP深度学习算法开发平台提供丰富的算法参数设置接口,满足不同用户业务场景的定制化需求。此外,慧视光电SpeedDP深度学习算法开发平台支持本地化服务器部署,数据敏感或对数据有保密需求的用户再也无需担心数据信息泄露的问题。目前慧视光电SpeedDP深度学习算法开发平台主要提供目标检测算法的开发功能,不同的用户可针对自己的业务场景进行AI算法的定制化开发以及算法模型的快速迭代优化。成都深度学习AI智能视觉