深度学习技术已经在滚动轴承故障监测和诊断领域取得了成功应用, 但面对不停机情况下的早期故障在线监测问题, 仍存在着早期故障特征表示不充分、误报警率高等不足. 为解决上述问题, 本文从时序异常检测的角度出发, 提出了一种基于深度迁移学习的早期故障在线检测方法. 首先, 提出一种面向多域迁移的深度自编码网络, 通过构建具有改进的比较大均值差异正则项和Laplace正则项的损失函数, 在自适应提取不同域数据的公共特征表示同时, 提高正常状态和早期故障状态之间特征的差异性; 基于该特征表示, 提出一种基于时序异常模式的在线检测模型, 利用离线轴承正常状态的排列熵值构建报警阈值, 实现在线数据中异常序列的快速匹配, 同时提高在线检测结果的可靠性. 在XJTU-SY数据集上的实验结果表明, 与现有代表性早期故障检测方法相比, 本文方法具有更好的检测实时性和更低的误报警数.通过监测刀具的振动频率和振幅,可以评估切削过程中的稳定性和刀具的健康状态。上海仿真监测公司
电机等振动设备在运行中,伴随着一些安全问题,振动数据会发生变化,如果不及时发现,容易导致起火或,造成大量的财产损失,而这些问题具有突发性和不准确性,应对这种情况,需要一种手段去解决。无线振动传感器直接读取原始加速度数据,准确可靠,避免后期计算出现较大误差。本传感器采用无线通讯方式,低功耗设计,一次性锂亚电池供电,具有容量大、耐高温、不宜爆等特点,工作原理:将传感器分布式安装在各类电机、风机、振动平台、回转窑、传送设备等需要振动监测的设备上实时采集振动数据,然后通过无线方式将数据发送给采集端,采集端将数据解析、显示或传输。系统能实时在线监测出设备异常,发出预警,避免事故发生。产品特点(1)实时性:系统实时在线监测电机等振动参数,避免了由于电机突然缺相、线圈故障,堵转、固定螺栓松动、负载过高和人为错误操作等发生的事故。(2)便捷性:采用无线传输方式,传感器安装,解决了以往因为空间狭小、不能布线、安装成本高等问题。(3)可靠性:系统采用先进成熟的传感技术和无线传输技术,抗干扰力强,传输距离远,读数准确,可靠性高。上海仿真监测公司监测技术有助于发现潜在问题、预测设备故障并采取维护措施,从而降低损坏风险,提高系统的可靠性和效率。
在预防性维护的应用中,振动是大型旋转等设备即将发生故障的重要指标,一是由于在大型旋转机械设备的所有故障中,振动问题出现的概率比较高;第二,振动信号包含了丰富的机械及运行的状态信息;第三,振动信号易于拾取,便于在不影响机械运行的情况下实行在线监测和诊断。旋转类设备的预防性维护需要重点监控振动量的变化。其预测性诊断技术对于制造业、风电等的行业的运维具有非常重大的意义。通过设备振动等状态的预测性维护,可以及时发现并解决系统及零部件存在问题。但是对于一些不是因为设备问题而存在的固有振动,振动强度的不必要增加会对部件产生有害的力,危及设备的使用寿命和质量。在这种情况下,则需要采用振动隔离技术来解决和干预,有效抑制振动和噪声的危害,避免设备故障和流程关闭。
物联网技术为设备状态监测诊断带来了设备状态无线监测、高速数据传输、边缘计算和精细化诊断分析等先进技术。本项目相关的状态监测技术是要解决海量终端(传感器数据)的联接、管理、实时分析处理。关键技术包含海量数据的采集和传输技术、信号处理技术和边缘计算技术。对设备进行诊断目的,是了解设备是否在正常状态下运转,为此需测定有关设备的各种量,即信号。如果捕捉到的信号能直接反映设备的问题,如温度的测值,则与设备正常状态伪规定值相比较即可。但测到的声波或振动信号一般都伴有杂音和其他干扰,放大多需滤波。回转机械的振动和噪声就是一例。一般测到的波形和数值没有一定规则,需要把表示信号特征的量提取出来,以此数值和信号图象来表示测定对象的状态就是信号处理技术其次边缘计算与云计算协同工作。云计算聚焦非实时、长周期数据的大数据分析,能够在周期性维护、故障隐患综合识别分析,产品健康度检查等领域发挥特长。边缘计算聚焦实时、短周期数据的分析,能更好地支撑故障的实时告警,快速识别异常,毫秒级响应;此外,两者还存在紧密的互动协同关系。边缘计算既靠近设备,更是云端所需数据的采集单元,可以更好地服务于云端的大数据分析。使用数据分析和机器学习算法来处理多传感器数据,建立模型以监测和预测刀具的寿命和健康状况。
振动的监测是机械设备状态监测与故障诊断的重要手段之一。通过对机械设备在运行过程中产生的振动信号进行测量、分析和处理,可以获取设备的状态信息,进而判断设备的健康状况,预测故障发展趋势,及时发现并处理潜在问题。振动的监测方法通常可以分为定期点检、随机点检和长期监测等几种方式。定期点检是按照预定的时间间隔对设备进行振动测量,适用于对设备状态进行定期检查和评估。随机点检则是在设备运行过程中,根据需要对设备进行振动测量,适用于对设备状态进行实时跟踪和监测。长期监测则是对设备进行连续不断的振动监测,适用于对设备状态进行长期跟踪和分析。在振动监测中,常用的传感器包括加速度计、速度计和位移计等。这些传感器可以测量设备在不同方向上的振动信号,并将振动信号转换为电信号进行传输和处理。通过对振动信号的分析,可以获取设备的振动特征参数,如振动幅值、频率、相位等,进而判断设备的运行状态和故障类型。总之,振动的监测是机械设备状态监测与故障诊断的重要手段之一。通过对振动信号的测量、分析和处理,可以及时发现并处理潜在问题,提高设备的可靠性和生产效率。同时,振动监测技术还可以为设备的预测性维护和优化运行提供有力支持。通过设备状态监测,可以解决设备各种监控数据的复杂性,状态动态变化带来的不确定性。上海设备监测台
电机监测系统产生大量的数据,包括振动数据、电流数据等。有效地处理和分析这些大量数据是一项挑战。上海仿真监测公司
智能船舶是指基于“网络平台”的信息技术应用,以“大数据”为基础,通过数据分析和数据处理,实现运行船舶的智能感知、判断分析和决策控制,从技术、设备、管理等多个层面保证船舶航行的安全和效率,大幅减少甚至杜绝人为或外部因素造成的各种事故。其主要目标就是安全、经济、高效、环保。而智能机舱是通过综合状态监测系统所获得的设备信息和数据,实现对机舱内机械设备的运行状态、健康状况进行分析和评估,进而完成设备操作辅助决策和维护保养计划的综合管控系统。它能及时地、准确地对多种异常状态或故障状态做出诊断,预防或消除故障,把故障损失降低到较低水平,同时对设备的运行进行必要的决策支持,提高设备运行的可靠性、安全性和有效性,也能确定设备的良好维护时间,降低设备全寿命周期费用,增加设备的稳定性。近日,盈蓓德成功交付了InsightlO智能监测系统,就是智能船舶中的智能机舱系统,这一创新技术将为船舶行业带来全新的智能化管理体验,标志着船舶行业智能化新篇章的开启。InsightlO智能监测系统是盈蓓德经过长期研发的成果,该系统能够实时监测机舱设备的各项运行数据。上海仿真监测公司