您好,欢迎访问

商机详情 -

温州原子力显微镜测试服务

来源: 发布时间:2024年04月16日

AFM液相成像技术的优点在于消除了毛细作用力,针尖粘滞力,更重要的是可以在接近生理条件下考察DNA的单分子行为;DNA分子在缓冲溶液或水溶液中与基底结合不紧密,是液相AFM面临的主要困难之一。硅烷化试剂,如3-氨丙基三乙氧基硅烷(APTES)和阳离子磷脂双层修饰的云母基底固定DNA分子,再在缓冲液中利用AFM成像,可以解决这一难题。在气相条件下阳离子参与DNA的沉积已经发展十分成熟,适于AFM观察。在液相条件下,APTES修饰的云母基底较常用。DNA的许多构象诸如弯曲,超螺旋,小环结构,三链螺旋结构,DNA三通接点构象,DNA复制和重组的中间体构象,分子开关结构和药物分子插入到DNA链中的相互作用都地被AFM考察,获得了许多新的理解。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状;温州原子力显微镜测试服务

温州原子力显微镜测试服务,原子力显微镜测试

接触模式(Contact Mode):优点:扫描速度快,是能够获得“原子分辨率”图像的AFM垂直方向上有明显变化的质硬样品,有时更适于用Contact Mode扫描成像。缺点:横向力影响图像质量。在空气中,因为样品表面吸附液层的毛细作用,使针尖与样品之间的粘着力很大。横向力与粘着力的合力导致图像空间分辨率降低,而且针尖刮擦样品会损坏软质样品(如生物样品,聚合体等)。非接触模式:优点:没有力作用于样品表面。缺点:由于针尖与样品分离,横向分辨率低;为了避免接触吸附层而导致针尖胶粘,其扫描速度低于Tapping Mode和Contact Mode AFM。通常用于非常怕水的样品,吸附液层必须薄,如果太厚,针尖会陷入液层,引起反馈不稳,刮擦样品。由于上述缺点,non-contact Mode的使用受到限制。轻敲模式:优点:很好的消除了横向力的影响。降低了由吸附液层引起的力,图像分辨率高,适于观测软、易碎、或胶粘性样品,不会损伤其表面。缺点:比Contact Mode AFM 的扫描速度慢。吉林原子力显微镜测试厂家会使得悬臂cantilever摆动,当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变;

温州原子力显微镜测试服务,原子力显微镜测试

AFM对RNA的研究还不是很多。结晶的转运RNA和单链病毒RNA以及寡聚Poly(A)的单链RNA分子的AFM图像已经被获得。因为在于不同的缓冲条件下,单链RNA的结构变化十分复杂,所以单链RNA分子的图像不容易采集。(利用AFM成像RNA分子需要对样品进行特殊和复杂的处理。Bayburt等借鉴Ni2+固定DNA的方法在缓冲条件下获得了单链Pre-mRNA分子的AFM图像。他们的做法如下:(1)用酸处理被Ni2+修饰的云母基底以增加结合力;(2)RNA分子在70℃退火,慢慢将其冷却至室温再滴加在用酸处理过的Ni2+-云母基底上。采用AFM单分子力谱技术,在Mg2+存在的溶液中,Liphardt等研究了形貌多变的RNA分子的机械去折叠过程,发现了从发夹结构到三螺旋连接体这些RNA分子三级结构的过渡态。随后他们又利用RNA分子证实了可逆非平衡功函和可逆平衡自由能在热力学上的等效性。)

AFM液相成像技术的优点在于消除了毛细作用力,针尖粘滞力,更重要的是可以在接近生理条件下考察DNA的单分子行为。DNA分子在缓冲溶液或水溶液中与基底结合不紧密,是液相AFM面临的主要困难之一。硅烷化试剂,如3-氨丙基三乙氧基硅烷(APTES)和阳离子磷脂双层修饰的云母基底固定DNA分子,再在缓冲液中利用AFM成像,可以解决这一难题。在气相条件下阳离子参与DNA的沉积已经发展十分成熟,适于AFM观察。在液相条件下,APTES修饰的云母基底较常用。DNA的许多构象诸如弯曲,超螺旋,小环结构,三链螺旋结构,DNA三通接点构象,DNA复制和重组的中间体构象,分子开关结构和药物分子插入到DNA链中的相互作用都地被AFM考察,获得了许多新的理解、;力检测部分在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。

温州原子力显微镜测试服务,原子力显微镜测试

AFM可以用来对细胞进行形态学观察,并进行图像的分析。通过观察细胞表面形态和三维结构,可以获得细胞的表面积、厚度、宽度和体积等的量化参数等;例如,利用AFM可以对后的细胞表面形态的改变、造骨细胞在加入底物(钴铬、钛、钛钒等)后细胞形态和细胞弹性的变化、GTP对胰腺外分泌细胞囊泡高度的影响进行研究。利用AFM还可以对自由基损伤的红细胞膜表面精细结构的研究,直接观察到自由基损伤,以及加女贞子保护作用后,对红细胞膜分子形态学的影响。原子力显微镜的工作模式是以针尖与样品之间的作用力的形式来分类的。吉林原子力显微镜测试厂家

带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动;温州原子力显微镜测试服务

DNA和蛋白质分子的特定相互作用在分子生物学中起着关键作用。蛋白质与DNA结合的精确位点图谱和不同细胞状态下结合位点的测定对于了解复杂细胞体系的功能与机理,特别是基因表达的控制都十分关键。AFM作为一种高度分辨达0。1nm,宽度分辨率为2nm左右的表面分析技术,已用于表征各类DNA-蛋白质的复合物。低湿度大气条件下,Rees等利用AFM在接触模式下考察了λ2PL启动子在启动和关闭转录过程中对DNA链弯曲程度的影响。此外,这个小组还研究了另外一种λ2转录因子,Cro-蛋白对DNA弯曲的影响。为了研究Jun蛋白的结合是否会引起DNA链的弯曲,Becker等利用AFM研究了包含一个AP21结合位点的线性化质粒DNA与Jun蛋白的复合物。Aizawa小组对DNA蛋白激酶Ku亚结构域和双链DNA断裂的相关性进行了研究。Kasas等研究了大肠杆菌RNA聚合酶(RNAP)转录过程中的动态酶活性。他们的方法是在Zn2+存在的条件下,RNAP能够松散或紧密地与DNA模板进行结合,通过AFM成像了解其动态过程。温州原子力显微镜测试服务