针对滚动轴承故障类型和损伤程度难以识别的问题,提出一种基于变分模态分解(VariationalModeDecomposition,VMD)和Gath-Geva(GG)模糊聚类相结合的滚动轴承故障分类方法。该方法通过对已知滚动轴承故障信号进行VMD分解,利用分量频率中心的大小确定分解模态的数量,将所得本征模态分量组成初始特征矩阵进行奇异值分解;选取3个比较大奇异值作为GG聚类算法的输入,得到已知故障信号的隶属度矩阵和聚类中心;通过待测信号初始隶属度矩阵与已知故障信号聚类中心之间的海明贴近度识别滚动轴承的故障类型和损伤程度。通过滚动轴承振动数据对所述方法的有效性进行验证,瓦伦尼安教学设备桌面式齿轮故障教学平台便携式转子轴承教学实验台桌面式转子轴承故障教学平台转子动力学研究实验台故障机理研究教学平台转子轴承综合故障模拟实验台诊断台转子轴承教学平台故障机理研究模拟实验台的应用领域有哪些?行星齿轮箱故障机理研究模拟实验台视频
PT700在内转子驱动电机机座上设置有内转子驱动电机,内转子驱动电机通过主联轴器和内转轴连接,套在内转轴上的内转子左轮盘,内转子左支承结构,内转子右轮盘和内转子右支承结构沿中心轴线依次连接;套在外转轴上的外转子左支承结构,外转子左轮盘和外转子右轮盘沿中心轴线依次连接.本发明采用可调刚度的弹性支承,可实验支承刚度对双转子动力特性的影响;可以模拟航空发动机双转子质量不平衡,转子碰摩和支座松动等机械故障.转静件碰摩状态下的叶片振动载荷和振动特性测试分析,基于弹性基础的内外双转子故障模拟实验台,涉及航空发动机实验装置.本实验台的结构主要是:在外转轴内设置有内转轴,两者中心轴线重合,通过中介支承结构机上海故障机理研究模拟实验台使用方法故障机理研究模拟实验台的使用方法需要熟练掌握。
智能预警超限报警根据标准设定报警阈值,当测量值超过阈值即发出相应的报警(规则I)变化率报警对变化率设定阈值,测量值虽然没超限但变化率超限,发出相应报警(规则II)趋势预警基于自适应阈值检测方法,可随工况变化自适应的调节阈值,能够有效减少由于固定阈值所引起的误检测和漏检测问题,实时工作状态●用户可实时观察和了解被监测对象当前各种故障的诊断情况以及所对应的特征值数据●***显示被监测对象各种故障的现象描述、判断依据、参考图谱、实时图谱以及诊断结果等信息,供用户参考比对●当系统发出故障预警时,用户可参考系统提供的各种参考信息,进一步综合判断被监测对象的故障状态●实时工作状态采用word文档页面展示,可以供第三方软件通过WebAPI接口直接调用,
在机械设备运行过程中,零部件的运动产生振动和冲击,包含着丰富的设备健康运行状态信息[1-2]。振动冲击往往是由零部件之间的碰撞敲击产生,其幅值大小、出现位置表现着设备的健康状态。在航空、船舶、石油化工等领域的机械设备中,包括航空发动机、内燃机、齿轮箱、往复压缩机、泵等,冲击振动是常见的故障模式[3-5]。因此,监测机械振动信号中的冲击成分可有效反映机械部件运行的健康状态,对设备进行故障诊断具有重要的意义。振动信号冲击成分呈现多频段分布,并伴随着噪声干扰,不同频率成分的冲击在时域混叠等问题[8-9]。以上情况,导致了复杂机械设备的实际振动监测信号的分析难度,造成了早期故障冲击特征难以捕捉等问题。更进一步地,其中一些往复机械(柴油机、往复压缩机、往复泵等)的振动信号的冲击成分在时域分布上呈现周期性间隔特点,与曲轴特定转角对应[10-12],单从回转设备的频域分析方法在此并不适应。由于实际振动信号的频域复杂性和时域多冲击分布特点,因此需要对采集的振动冲击信号进行频域分解和时域冲击的提取,为后续特征提取和故障诊断奠定基础。故障机理研究模拟实验台的运行需要精心维护。
PT580水泵测试台可以对离心泵的各种故障进行振动采集诊断(例如:气蚀现象、叶轮裂纹、叶轮磨损、叶轮不平衡等故障),包括可以模拟各种故障轴承元件,对故障信号进行检测处理判断故障类型。是在一片多晶硅上通过微机械加工出加速度敏感原件,它由转换,测量,放大电路组成属于集成传感器,可远程、动态、实时、连续、采集设备的三轴振动和温度数据,通过运算能力直接运算12种振动相关特征值,并使用有线或者无线等各类通讯方式,将特征值和原始信号传输到上层系统做分析处理,为各行业客户提供低成本、智能化的在线设备健康监测方案。行星齿轮箱故障机理研究模拟实验台。HOJOLO故障机理研究模拟实验台图片
轴承寿命预测故障机理研究模拟实验台。行星齿轮箱故障机理研究模拟实验台视频
往复压缩机作为工业生产中的重要组成设备,保证其正常运行具有极其重要的实际意义。根据相关研究统计,气阀故障大约占到了往复压缩机故障总数的60%[1]。因此,有必要对往复压缩机气阀故障进行深入的分析和研究。往复压缩机气阀在工作中会受到摩擦,冲击等多种因素的干扰,导致其振动信号具有强烈的非线性,非平稳性特征[2]。针对上诉信号,目前多采用小波分析、经验模态分解(EMD)、变分模态分解(VMD)、熵值法、分形方法等对其进行分析研究,其中,多重分形方法不仅可以深层次的描述气阀信号非平稳、非线性特征,同时可以描述气阀振动信号的自相似性,进而可以更***准确的提取往复压缩机气阀的故障特征行星齿轮箱故障机理研究模拟实验台视频