过去认为,膜片钳只能在培养细胞或酶解的细胞上进行,这样得到的细胞膜表面比较光滑,才能够形成高阻封接,但缺点是组织的正常三维结构被破坏,并且对神经中枢内突触特有的传递机能的研究无法展开。于是,一些学者建立了组织切片膜片钳技术(Slicepatch),就能在哺乳动物脑片制备上做全细胞记录。1992年,在脑片膜片钳技术上,美国Ferster实验室报道在在体猫的视皮层用膜片钳全细胞记录研究了视刺激诱发的兴奋性和***性突触后电位相互影响及节律性膜电位的变化规律。1993年,德国的Dodt和Sakmann合作,利用红外电视显微镜监视,使得膜片钳记录不但能够在神经元胞体及其树突上进行,而且可同时在这两个不同的部位作膜片钳记录。微电极的制备膜片钳电极是用外径为1-2mm的毛细玻璃管拉制成的。德国单通道膜片钳报价
膜片钳技术原理:膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来(见右图),由于电极前列与细胞膜的高阻封接,在电极前列笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就单一离子通道电流膜片钳技术的建立,对生物学科学特别是神经科学是一资有重大意义的变革。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术。些技术的出现自然将细胞水平和分子水平的生理学研究联系在一起,同时又将神经科学的不同分野必然地融汇在一起,改变了既往各个分野互不联系、互不渗透,阻碍人们较全认识能力的弊端。这一技术的发现和基因克隆技术并架齐驱,给生命科学研究带来了巨大的前进动力。进口膜片钳参数在膜电位改变时,在电场的作用下,重新分布导致通道的关闭,同时有电荷移动,称为门控电流。
离子通道的近代观念源于Hodgkin、Huxley、Katz等人在20世纪30—50年代的开创性研究。在1902年,Bernstein创造性地将Nernst的理论应用到生物膜上,提出了“膜学说”。他认为在静息状态下,细胞膜只对钾离子具有通透性;而当细胞兴奋的瞬间,膜的破裂使其丧失了选择通透性,所有的离子都可以自由通过。Cole等人在1939年进行的高频交变电流测量实验表明,当动作电位被触发时,虽然细胞的膜电导大为增加,但膜电容却只略有下降,这个事实表明膜学说所宣称的膜破裂的观点是不可靠的。1949年Cole在玻璃微电极技术的基础上发明了电压钳位(voltage clamp technique)技术
膜片钳放大器的工作模式;(1)电压钳模式∶在钳制细胞膜电位的基础上改变膜电位,记录离子通道电流的变化,记录的是诸如通道电流;EPSC;IPSC等电流信号。是膜片钳的基本工作模式.(2)屯流钳素向细胞内注入刺激电流,记录膜电位对刺激电流的反应。记录的是诸如动作电位,EPSP;IPSP等电压信号。膜片钳技术实现膜电位固定的关键是在玻璃微电极前列边缘与细胞膜之间形成高阻(10GΩ)密封,使电极前列开口处相接的细胞膜片与周围环境在电学上隔离,并通过外加命令电压钳制膜电位。膜电位Vm由高输入阻抗的电压跟随器所测量。
膜片钳技术本质上也属于电压钳范畴,两者的区别关键在于:①膜电位固定的方法不同;②电位固定的细胞膜面积不同,进而所研究的离子通道数目不同。电压钳技术主要是通过保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流情况。因此只能用来研究整个细胞膜或一大块细胞膜上所有离子通道活动。目前电压钳主要用于巨大细胞的全性能电流的研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥着其他技术不能替代的作用。该技术的主要缺陷是必须在细胞内插入两个电极,对细胞损伤很大,在小细胞如元,就难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致。通过膜片钳放大器的控制键将微电极的连接电位(junction potentials)调至零位。进口细胞膜片钳价格
这是一种以记录通过离子通道的离子电流来反映细胞膜单一的或多个的离子通道分子活动的技术。德国单通道膜片钳报价
电压钳的缺点∶电压钳技术目前主要用于巨火细胞的全细胞电流研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥其它技术不能替代的作用。但也有其致命的弱点1、微电极需刺破细胞膜进入细胞,以致造成细胞浆流失,破坏了细胞生理功能的完整性;2、不能测定单一通道电流。因为电压钳制的膜面积很大,包含着大量随机开放和关闭着的通道,而且背景噪音大,往往掩盖了单一通道的电流。3、对体积小的细胞(如哺乳类***元,直径在10-30μm之间)进行电压钳实验,技术上有更大的困难。由于电极需插入细胞,不得不将微电极的前列做得很细,如此细的前列致使电极阻抗很大,常常是60~-8OMΩ或120~150MΩ(取决于不同的充灌液)。这样大的电极阻抗不利于作细胞内电流钳或电压钳记录时在短时间(0.1μs)内向细胞内注入电流,达到钳制膜电压或膜电流之目的。再者,在小细胞上插入的两根电极可产生电容而降低测量电压电极的反应能力。德国单通道膜片钳报价
因斯蔻浦(上海)生物科技有限公司是一家从事nVista,nVoke,3D bioplotte,invivo研发、生产、销售及售后的服务型企业。公司坐落在中山北路1759号浦发广场D座803,成立于2019-05-27。公司通过创新型可持续发展为重心理念,以客户满意为重要标准。Inscopix,envisionTEC,rokit,piezosleep,stoeltingco,unipick,neuronexus,scientifica,alphaomega,divescope,invivo目前推出了nVista,nVoke,3D bioplotte,invivo等多款产品,已经和行业内多家企业建立合作伙伴关系,目前产品已经应用于多个领域。我们坚持技术创新,把握市场关键需求,以重心技术能力,助力仪器仪表发展。Inscopix,envisionTEC,rokit,piezosleep,stoeltingco,unipick,neuronexus,scientifica,alphaomega,divescope,invivo为用户提供真诚、贴心的售前、售后服务,产品价格实惠。公司秉承为社会做贡献、为用户做服务的经营理念,致力向社会和用户提供满意的产品和服务。nVista,nVoke,3D bioplotte,invivo产品满足客户多方面的使用要求,让客户买的放心,用的称心,产品定位以经济实用为重心,公司真诚期待与您合作,相信有了您的支持我们会以昂扬的姿态不断前进、进步。