电压钳技术是由科尔发明的,并在20世纪初由霍奇金和赫胥黎完善。其设计的主要目的是证明动作电位的产生机制,即动作电位的峰值电位是由于膜对钠的通透性瞬间增加。但当时还没有直接测量膜通透性的方法,所以用膜电导来测量离子通透性。膜电导测量的基础是电学中的欧姆定律,如膜Na电导GNa与电化学驱动力(Em-ENa)的关系,膜电流INaGNa=INa/(Em-ENa)。因此,可以通过测量膜电流,然后利用欧姆定律来计算膜电导。然而,膜电导可以通过使用膜电流来计算。这个条件是通过电压钳技术实现的。下一张幻灯片中右边的两张图显示了squid的动作电位和动作电位过程中膜电流的变化,这是霍奇金和赫胥黎在半个世纪前用电压钳记录的。他们的实验证明了参与动作电位的离子电流由三种成分组成:Na、K、Cl。对这些离子流进行了定量分析。这项技术为阐明动作电位的本质和离子通道的研究做出了巨大贡献。离子通道探索之旅,从选择膜片钳开始!美国双分子层膜片钳技术
资料分析:一般电学性质∶通过I/V关系计算得到单通道电导,观察通道有无整流。通过离子选择性、翻转电位或其它通道的条件初步确定通道类型。通道动力学分析∶开放时间、开放概率、关闭时间、通道的时间依赖性失活、开放与关闭类型(簇状猝发,Burst)样开放与闪动样短暂关闭(flickering),化学门控性通道的开、关速率常数等数据。药理学研究∶研究的药物,阻断剂、激动剂或其它调制因素对通道活动的影响情况。综合分析得出结沦。德国双电极膜片钳实验操作典型的单通道电流呈一种振幅相同而持续时间不等的脉冲样变化。
膜片钳技术的建立。抛光并填充玻璃管微电极,并将其固定在电极支架中。2.通过与电极支架连接的导管向微电极施加压力,直到电极浸入记录槽溶液中。3.当电极浸入溶液中时,给电极一个测量脉冲(命令电压,如5-10ms,10mV)读取电流,根据欧姆定律计算电阻。4.通过膜片钳放大器的控制键将微电极前端的连接电位调至零。这种电势差是由电极中的填充溶液和浸浴之间的不同离子成分的迁移引起的。5.用显微操作器将微电极前缘靠近直视下待记录的细胞表面,观察电流的变化,直至阻抗达到1gω以上,形成“干封”6。将静息膜电位调整到预期的钳制电压水平,这样当细胞没有钳制到零时,放大器可以从“搜索”变为“电压钳制”。
膜片钳放大器的工作模式;(1)电压钳制模式:在钳制细胞膜电位的基础上改变膜电位,记录离子通道电流的变化,如通道电流;EPSC;IPSC等电流信号它是膜片钳的基本工作模式。(2)屯留钳向细胞注入刺激电流,记录膜电位对刺激电流的响应。记录的是动作电位,EPSP;IPSP等电压信号膜片钳技术实现膜电位固定的关键是在玻璃微电极前沿与细胞膜之间形成高阻(10GΩ)密封,使与电极前开口相连的细胞膜与周围环境电隔离,通过施加指令电压来钳制膜电位。膜片钳技术,为您揭示细胞生命活动的细微变化!
膜片钳技术本质上也属于电压钳范畴,两者的区别关键在于:①膜电位固定的方法不同;②电位固定的细胞膜面积不同,进而所研究的离子通道数目不同。电压钳技术主要是通过保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流情况。因此只能用来研究整个细胞膜或一大块细胞膜上所有离子通道活动。目前电压钳主要用于巨大细胞的全性能电流的研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥着其他技术不能替代的作用。该技术的主要缺陷是必须在细胞内插入两个电极,对细胞损伤很大,在小细胞如元,就难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致。早期的研究多使用双电极电压钳技术作细胞内电活动的记录。进口单通道膜片钳研究
膜片钳放大器系统(以下简称IPA系统)是高度自动化的膜片钳放大器系统,所有的功能均通过计算机软件完成。美国双分子层膜片钳技术
膜片钳技术∶从一小片(约几平方微米)膜获取电子学方面信息的技术,即保持跨膜电压恒定——电压钳位,从而测量通过膜离子电流大小的技术。通过研究离子通道的离子流,从而了解离子运输、信号传递等信息。基本原理:利用负反馈电子线路,将微电极前列所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。研究离子通道的一种电生理技术,是施加负压将玻璃微电极的前列(开口直径约1μm)与细胞膜紧密接触,形成高阻抗封接,可以精确记录离子通道微小电流。能制备成细胞贴附、内面朝外和外面朝内三种单通道记录方式,以及另一种记录多通道的全细胞方式。膜片钳技术实现了小片膜的孤立和高阻封接的形成,由于高阻封接使背景噪声水平**降低,相对地增宽了记录频带范围,提高了分辨率。另外,它还具有良好的机械稳定性和化学绝缘性。而小片膜的孤立使对单个离子通道进行研究成为可能。美国双分子层膜片钳技术