膜片钳技术是神经科学领域非常重要的一项技术,1976年由国马普生物物理研究所Neher和Sakmann发明,从而在活细胞上记录到单个离子通道的电流。近半个世纪来,膜片钳技术已经成为神经科学领域较常用也是较实用的技术之一,具有极大的精确性和灵活性,能够揭示离子通道,单细胞突触反应,及神经环路连接等多层次的电生理特性。做过膜片钳的人都知道,膜片钳的信号采集设备一般由前置放大器,放大器,模数/数模转换器等构成,神经元电信号先通过前置放大器(headstage)初步放大,后传输入放大器进一步放大,再传入模数转换器转化为数字信号,后被计算机采集。下图显示的是我们较常使用的AXON和HEKA膜片钳的一个信号传输路径。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*64小时随时人工在线咨询.膜片钳的膜电容检测与碳纤电极电化学检测联合运用的技术。芬兰单电极膜片钳高阻抗封接
电压钳的缺点∶电压钳技术目前主要用于巨火细胞的全细胞电流研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥其它技术不能替代的作用。但也有其致命的弱点1、微电极需刺破细胞膜进入细胞,以致造成细胞浆流失,破坏了细胞生理功能的完整性;2、不能测定单一通道电流。因为电压钳制的膜面积很大,包含着大量随机开放和关闭着的通道,而且背景噪音大,往往掩盖了单一通道的电流。3、对体积小的细胞(如哺乳类***元,直径在10-30μm之间)进行电压钳实验,技术上有更大的困难。由于电极需插入细胞,不得不将微电极的前列做得很细,如此细的前列致使电极阻抗很大,常常是60~-8OMΩ或120~150MΩ(取决于不同的充灌液)。这样大的电极阻抗不利于作细胞内电流钳或电压钳记录时在短时间(0.1μs)内向细胞内注入电流,达到钳制膜电压或膜电流之目的。再者,在小细胞上插入的两根电极可产生电容而降低测量电压电极的反应能力。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*43小时随时人工在线咨询.美国脑片膜片钳研究膜片钳是一种用于夹持薄膜或其他薄片材料的工具。
ePatch的一些设计亮点还包括:可以在软件中用数据记录实验,不用带专门的实验笔记本,也不用担心这个笔记本上记录的内容找不到对应的数据,系统会一一对应。电压电流刺激模式的编辑就更蠢了。很多模块可以直接拖拽,并配有样图,让你对自己编辑的程序一目了然。实时全电池参数估计,包括强大的密封电阻、膜电容、膜电阻等重要参数在线分析功能,包括电压钳模式下的I/Vgraph、eventdetection、FFT,电流钳模式下的APthresholddetection、APfrequency、APslope等数据可以多种格式保存。如果你是程序员,可以支持使用Matlab进行数据分析。如果没有这样的经历,就没有问题。数据可以保存为Clampfit,以便直接分析。
对药物作用机制的研究,在通道电流记录中,可分别于不同时间、不同部位(膜内或膜外)施加各种浓度的药物,研究它们对通道功能的可能影响,了解那些选择性作用于通道的药物影响人和动物生理功能的分子机理。这是目前膜片钳技术应用普遍的领域,既有对西药药物机制的探讨,也普遍用在重要药理的研究上。如开丽等报道细胞贴附式膜片钳单通道记录法观测到人参二醇组皂苷可控制正常和“缺血”诱导的大鼠大脑皮层神经元L-型钙通道的开放,从而减少钙内流,对缺血细胞可能有保护作用。陈龙等报道采用细胞贴附式单通道记录法发现乌头碱对培养的Wistar大鼠心室肌细胞L-型钙通道有阻滞作用。膜片钳80%的工夫在于刺备细胞。
一、记录设备首先,尽可能完善膜片钳记录设备是实验前的重要步骤,如用模型细胞测定电子设备、安装并测试应用软件、调节光学显微镜、检验防震工作台等。二、微电极的制备膜片钳电极是用外径为1-2mm的毛细玻璃管拉制成的。标准的毛细玻璃管(外经1.5mm,管壁厚0.3mm)适合于制作单通道记录的微电极,而全细胞记录则应选管壁较薄(0.16mm)的毛细玻璃管,这样可以使电极阻抗较低。三、封接(Sealing)技术封接(seal)是膜片钳记录的关键步骤之一。封接不好噪声太大必然影响细胞膜电信号的记录,一般要求封接阻抗至少20GΩ才可进行常规记录。为了形成良好封接必须保持清洁的溶液、良好的视野以及适当的电极镀膜。为了获得较好的"千兆欧封接",细胞表面必须裸露以便微电极前列能接触细胞,细胞的大小也是成功记录的个因素,一般选择10-20um的细胞比较理想。现代膜片钳技术是在电压钳技术的基础上发展起来的。芬兰膜片钳价格
膜片钳技术实现了小片膜的孤立和高阻封接的形成。芬兰单电极膜片钳高阻抗封接
膜片钳技术是由诺贝尔奖获得者Neher和Sakmann于1976年发展起来的一种记录细胞膜离子通道电生理活动的技术。该技术的应用连接了细胞水平和分子水平的生理学研究,已成为现代细胞电生理学研究的常规方法。它广泛应用于生物学、生理学、病理学、药理学、神经科学、植物和微生物学,并取得了丰硕的研究成果。膜片钳技术点燃了细胞和分子水平生理学研究的**之火,并与基因克隆技术并驾齐驱,给生命科学研究带来了巨大的推动力。钙成像技术***用于实时监测神经元、心肌和各种细胞内钙离子的变化,从而检测神经元和心肌的活动。这些技术是人们观察神经和各种细胞活动的直接手段,现已发展成为生命科学研究的热点,也是国家自然科学基金鼓励申报的重要领域。芬兰单电极膜片钳高阻抗封接