纳米微泡比超声微泡具有更好的被动瞄准能力,因为纳米微泡的尺寸小于1µm;因此,它们可以通过EPR效应渗透到血管壁并积聚在斑块内。超声微泡中使用的原料或外壳配方会影响表面电荷性质,同时颗粒大小决定了超声微泡在体内的分布。超声微泡的分布特性影响成像诊断的成功及其通过被动和主动靶向给药的有效性“被动靶向”一词指的是增强的per-merabilityretention(EPR)效应,该效应驱动无特异性靶向的裸超声微泡到达病变目标。然而,裸超声微泡通常在静脉注射后10分钟内被吞噬进入网状上皮系统(RES)与***中的内皮功能障碍相关,内膜微血管渗漏可以作为针对***斑块的药物递送的被动靶向途径。因此,纳米微泡比超声微泡具有更好的被动瞄准能力,因为纳米微泡的尺寸小于1µm;因此,它们可以通过EPR效应渗透到血管壁并积聚在斑块内然而,纳米微泡的缺点是无法获得高质量的超声成像因为小尺寸的气泡会降低声响应制备成像用纳米微泡的策略之一是调整和修改纳米微泡的壳体组成,以增加其回波性由于EPR效应与尺寸有关,研究人员在制造100-200nm左右的小尺寸纳米微泡方面存在困难目前的研究表明,与小于50nm和大于300nm的颗粒相比,100-200nm之间的颗粒尺寸在病变部位的蓄积更大。 心脏缺血区域的超声造影增强与对照组非缺血区域的信号有统计学差异。重庆超声微泡荧光
通过超声微泡诱导空化可以改变**血管和细胞膜的通透性。稳定空化(SC)和惯性空化(IC)都可以对*组织的血管壁和细胞膜造成机械干扰,从而提高EPR在**中的作用。超声作用于含有超声微泡的血管,可改变血管壁的通透性,导致药物外渗至间隙。***通透性的改变取决于多种因素,包括壳成分、气泡大小、***直径与气泡直径之比以及超声参数。除了改变血管壁的通透性外,超声微泡的空化还可以增强细胞膜的通透性。气泡的破裂和相关射流的产生可以瞬间破坏相邻的细胞膜。细胞膜内产生小孔,导致可修复或不可修复的声穿孔。在不同的超声参数下,细胞膜内会产生短暂的孔,外源物质因此可以被运输到细胞质中。超声微泡的崩溃还可以引起**组织中的细胞死亡,这进一步减轻了固体应力,并可以减少更深穿透的障碍。研究表明,空化效应可以通过三种不同的机制改变血管和细胞膜通透性:(1)在SC过程中振荡气泡受到规律的机械干扰时,细胞膜电位发生改变以促进内吞摄取。(2)在从SC到IC的转变过程中,振荡泡的体积发生了变化。血管内皮细胞之间的间隙暂时增加,血管内皮的完整性被破坏,从而增强了活性物质的扩散,活性物质可以进入组织。(3)基于IC产生的声孔作用,血管内皮细胞内产生瞬时孔隙。 重庆超声微泡荧光将配体附着在微泡表面的基本方法有两种:要么通过直接共价键,要么通过生物素-亲和素连接。
载药超声微泡造影剂另一种选择是通过赋予超声微泡生物启发策略,其中天然细胞膜可以用作构建超声微泡的材料。天然细胞膜具有固有的合适特性,如生物相容性、免疫逃逸、自我识别和主动靶向特性。已有研究表明,血小板生物纳米微泡对血管损伤具有优越的靶向能力,可用于超声造影成像。另一种可用于靶向***的候选细胞是白细胞或巨噬细胞,因为它们具有可以特异性结合***斑块中VCAM-1受体的表面蛋白。为了增强细胞膜的降解,可以将超声微泡与光热剂结合,从而随着温度的升高,增加了现场降解的速度,从而提高了药物在病变部位的释放速度。
目前,有3家微泡厂家生产的产品可用于心脏病学应用,分别是Optison(GE Healthcare,Milwaukee,WI,),Definity(Lantheus Medical Imaging,Billerica,MA,E)和SonoVue(BraccoSpA,Milano,Italy)。这些试剂中的微泡大于1um,有效成像持续时间小于10分钟。南京星叶生物公司研发的超声微泡造影剂是有脂质外壳包裹全氟丙烷惰性气体组成,平均尺寸约为500-700nm,比商品化微泡的粒径小得多。小尺寸分布防止微泡被困在肺***床中,从而允许长时间的体内成像。纳米微泡成像持续时间长达20分钟,而声诺维的成像持续时间小于6min。了解微泡靶向性的方法是在体外受控条件下,以已知的流速、配体和受体密度进行靶向性研究。
***的诊断是在选择合适的***方法之前确定和分析疾病部位的初始阶段以及区分各种类型的病理病变,特别是***性疾病。诊断通常在成像技术的帮助下实现,成像技术使研究人员能够更好地了解和可视化***斑块及其进展。然而,成像方法有时无法准确分析易损斑块,因此研究人员使用特异性靶向超声微泡开发心肌梗死。有几种靶向***的分子靶标,包括细胞间粘附分子(ICAM-1)、血管细胞粘附分子1 (VCAM-1)、选择素、氧化脂质、薄纤维帽和血管平滑肌细胞(VSMCs)。例如,p -选择素在几种心血管疾病和损伤的血管内皮中表达,CD81是***斑块形成的初始阶段标志物。除了常见的靶点外,还有许多***的分子靶点,目前仍很少被使用和探索。这些分子靶点可用于增强超声微泡的主动靶向传递,扩大***诊断和***的可能性。为了获得成功的MNB靶向,需要进行表面修饰以附着特定的配体或抗体。针对心肌梗死的靶向超声微泡必须基于受体与配体之间的强亲和力,通过鼻内注射和超声应用,可以在计算机屏幕上清楚地观察到生成的图像。基于EPR的纳米颗粒靶向策略主要致力于调整药物或载体的大小和/或利用配体连接涉及EPR效应的分子。胰腺靶向超声微泡DNA
组织中的生物学改变对纳米微泡的效率起着至关重要的作用。重庆超声微泡荧光
超声微泡的壳体类型的变化会影响所产生气泡的厚度、刚度和耐久性。除此之外,壳的厚度在气体**和外部介质之间起着屏障的作用,不同的材料会产生不同的壳厚度。含脂类的壳厚约为3nm,而基于蛋白质和聚合物的壳厚分别约在15 - 20nm和100 - 200nm之间。脂基超声微泡比聚合物基超声微泡更容易制备和修饰。脂基超声微泡常用的外壳材料包括二油基磷脂酰乙醇胺(DOPE)、1,2-二棕榈酰-sn-甘油-3-磷脂酰胆碱(DPPC)和1,2-二硬脂酰-sn-甘油-3-磷脂酰胆碱(dsc)。壳聚糖和白蛋白是聚合物基超声微泡和蛋白质基超声微泡中使用的材料的例子。聚乳酸-羟基乙酸(PLGA)由于其天然的生物可降解性,也是合成超声微泡的常用材料。重庆超声微泡荧光